THE $31^{\text {st }}$ ANNUAL (2009) UNIVERSITY OF MARYLAND HIGH SCHOOL MATHEMATICS COMPETITION

PART I SOLUTIONS

1. If c is the number of correct answers, then $25-c$ is the number of incorrect answers. The score is $-8=4 c-2(25-c)=6 c-50$. This yields $c=7$. The answer is \mathbf{c}.
2. Let b be the weight of bones and d the weight of dry dog food. Then $75 b+25 d=200$ and $b+d \geq 5$. The first equation yields $b=(8-d) / 3$, so $(8-d) / 3+d \geq 5$. This says that $d \geq 3.5$. Since Toby prefers bones, he brings home the minimum amount of dry dog food. The correct answer is a. (Note: Several students mistakenly thought that bones are not food and therefore assumed that Toby had to bring home at least 5 pounds of Puppy Chow. The question of how many pounds of Puppy Chow are bought then of course has 5 as the answer. We therefore decided also to accept d as an answer.)
3. The numbers can be rewritten as $2^{16}, 2^{18}, 3^{16}, 2^{64}, 2^{81}$. The last of these is clearly the largest $\left(2^{81}>4^{16}>3^{16}\right)$. The answer is \mathbf{e}.
4. Let x be the other leg. The area is $60=\frac{1}{2}(x)(15)$, so $x=8$. The hypotenuse is $\sqrt{15^{2}+8^{2}}=17$. The answer is \mathbf{c}.
5. Let t be the number of tricycles and b be the number of bicycles. Then $3 t+2 b=270$ and $b=3 t$. Therefore, $3 t+2(3 t)=270$, so $t=30$. This means that $b=3 t=90$, so there are 120 students at the school. The answer is \mathbf{e}.
6. It must be the square of an even number. We have $42^{2}=1764,44^{2}=1936$, and $46^{2}=2116$. Only 1936 is in the required set of years. The answer is a.
7. n is odd and a multiple of 5 . Therefore, it ends in 5 . The answer is \mathbf{c}.
8. The line is $y=3 x-1$. This intersects the parabola when $3 x-1=x^{2}-x$, which rearranges to $0=x^{2}-2 x+1=(x-1)^{2}$. Therefore, $x=1$. The answer is \mathbf{c}.
9. Write $8=2^{3}, 16=2^{4}, 4=2^{2}$. The expression becomes

$$
\frac{3 \log _{10}(2) \times 4 \log _{10}(2)}{\log _{10}(2) \times 2 \log _{10}(2)}=6 .
$$

The answer is \mathbf{e}.
10. Let $A B C$ be the triangle, let O be the center of the circle, and let M be the midpoint of $B C$. Then triangle $O M B$ is a 30-60-90 triangle. Since the circle has area π, its radius is 1 , so $O M$ has length 1 . Therefore, $M B$ has length $\sqrt{3}$, so $B C$ has length $2 \sqrt{3}$. The answer is \mathbf{b}.
11. The sum of the angles in triangle $A B C$ is 180 , so $A B C+A C B=180-70=110$. Since $B D$ and $C D$ bisect the angles, $D B C+D C B=\frac{1}{2}(A B C+A C B)=55$. Since $D B C+D C B+B D C=180$, we have $B D C=180-55=125$. The answer is \mathbf{d}.
12. Draw the graphs of $y=\log _{10}(x)$ and $y=\sin (x)$. The graphs cross once between 0 and π, and twice between 2π and 3π. The answer is \mathbf{d}.
13. There are two choices for the driver. After the driver is seated, there are two choices remaining for the front-seat passenger. There are $3 \times 2 \times 1=6$ ways to seat the remaining passengers in the back. This gives $2 \times 2 \times 6=24$ total ways to seat the people. The answer is \mathbf{d}.
14. When p is divided by 12 , the remainder is $1,5,7$, or 11 (the other possibilities give multiples of 2 or 3). Therefore, $p=12 j+k$, where $k=1,5,7$, or 11 . Squaring yields $p^{2}=144 j^{2}+24 j k+k^{2}$, which is a multiple of 12 plus k^{2}. The value of k^{2} is $1,25,49$, or 121 , each of which is one more than a multiple of 12 . Therefore, p^{2} is 1 more than a multiple of 12 , so the remainder is 1 . The answer is \mathbf{a}.
15. Let s be the number of seniors, so the total number of players is $s+2$. Each player plays $s+1$ games, so the total number of games is $\frac{1}{2}(s+1)(s+2)$ (divide by 2 since $(s+1)(s+2)$ counts each game twice, once for each player). Each game yields a total of 1 point awarded (either $0+1$ or $\left.\frac{1}{2}+\frac{1}{2}\right)$. Therefore, the total number of points awarded is $\frac{1}{2}(s+1)(s+2)$. Let x be the common score of the seniors. Then $8+x \times s=\frac{1}{2}(s+1)(s+2)$. This yields $s^{2}+3 s-2 x s=14$, which says that 14 is a multiple of s. So $s=1,2,7,14$. Since $s=1,2$ yields negative x and $s=14$ is too large, we must $s=7$ (and $x=4$). The answer is \mathbf{c}.
16. Since any digit except 1 can be used, there are $9^{3}=729$ integers from 0 to 999 that use no ones, hence 728 from 1 to 999 . All of the integers from 1000 to 1999 use ones. From 2000 to 2009 there are 9 that do not use ones. The total is 737 . The answer is \mathbf{c}.
17. We can ignore powers of x higher than x^{2}. We have

$$
P=\left(1+k x+\frac{1}{2} k(k-1) x^{2}+\cdots\right)\left(1-(100-k) x+\frac{1}{2}(100-k)(99-k) x^{2}+\cdots\right) .
$$

The coefficient of x^{2} is $\frac{1}{2} k(k-1)+\frac{1}{2}(100-k)(99-k)-k(100-k)=2(k-45)(k-55)$. This is positive when $k \leq 44$ or $k \geq 56$, so there are 89 values of k that give a positive coefficient. The answer is \mathbf{d}.
18. The area of $S_{1}-C_{1}$ is $s^{2}-(\pi / 4) s^{2}$. The area of $C_{2}-S_{2}$ is $\pi r^{2}-2 s^{2}$. Therefore,

$$
s^{2} / r^{2}=4 \frac{\pi-2}{4-\pi}=\frac{8}{4-\pi}-4
$$

Since $3<\pi<3.2$, we have $8<8 /(4-\pi)<10$. Therefore, $4<s^{2} / r^{2}<6$, so $2<s / r<2.5$. The closest integer to s / r is 2 , so the answer is \mathbf{b}.
19. If C and D are telling the truth, then no one is lying. Therefore, either C or D is lying. If D is lying then someone else has the smallest, so one of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}$ is also lying, which is not allowed. Therefore, C is lying and $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}$ are telling the truth. This allows only the possibility that E has the largest prime. The answer is \mathbf{e}.
20. Let $a=f(4)$ and $b=f(1 / 4)$. Setting $x=4$ yields $a+5 b=7$. Setting $x=1 / 4$ yields $b+5 a=13 / 4$. Solving these two equations yields $a=37 / 96$. The answer is \mathbf{e}.
21. Let x be the vertical leg and y be the horizontal leg of the right triangle. Similar triangles yield the relation $(x-1) / 1=1 /(y-1)$, so $(x-1)(y-1)=1$, hence $x y=x+y$. The Pythagorean theorem yields $x^{2}+y^{2}=15$. Therefore,

$$
(x+y)^{2}=x^{2}+y^{2}+2 x y=15+2(x+y) .
$$

This yields $(x+y-5)(x+y+3)=0$, so $x+y=5$. The answer is \mathbf{d}.
22. Dividing by y yields $y^{2}=4+(5 / y)$. Since $2<y<3$, we have $5 / 3<5 / y<5 / 2$, so $4+(5 / 3)<$ $y^{2}<4+(5 / 2)$. This means the closest integer to y^{2} is 6 . The answer is \mathbf{c}.
23. The amenable numbers are the 10 distinct permutations of 22211 , the 10 distinct permutations of 33111 , and the 20 distinct permutations of 52111 . This gives a total of 40 amenable numbers. The answer is \mathbf{d}.
24. Let $a=\sqrt{x-1 / x}$ and $b=\sqrt{1-1 / x}$. Then $a+b=x$ and $(a+b)(a-b)=a^{2}-b^{2}=x-1$. Therefore, $a-b=(x-1) / x$. Adding yields $2 a=x+(x-1) / x=1+a^{2}$, which says that $(a-1)^{2}=0$. Therefore, $a=1$, so $x-1 / x=1$. This yields $x=(1 \pm \sqrt{5}) / 2$. Only $(1+\sqrt{5}) / 2$ satisfies the original equation. The answer is \mathbf{b}.
25. Let s_{k} be the number of good permutations of the integers from 1 to k. Clearly $s_{1}=1$ and $s_{2}=2$. It is easy to see that k must occur in one of the last 2 positions. If k occurs in the last position, then a good permutation is simply a good permutation of 1 to $k-1$ with k appended. If k occurs in the next to last place, then $k-1$ must occur in the last place. The first $k-2$ numbers are therefore a good permutation of 1 to $k-2$. It follows that $s_{k}=s_{k-1}+s_{k-2}$. Since $s_{1}=1$ and $s_{2}=2$, we see that the numbers s_{k} are Fibonacci numbers and $s_{10}=89$. The answer is \mathbf{d}.

