THE 31st ANNUAL (2009) UNIVERSITY OF MARYLAND HIGH SCHOOL MATHEMATICS COMPETITION

PART I SOLUTIONS

- 1. If c is the number of correct answers, then 25 c is the number of incorrect answers. The score is -8 = 4c 2(25 c) = 6c 50. This yields c = 7. The answer is **c**.
- 2. Let b be the weight of bones and d the weight of dry dog food. Then 75b+25d=200 and $b+d \geq 5$. The first equation yields b=(8-d)/3, so $(8-d)/3+d \geq 5$. This says that $d \geq 3.5$. Since Toby prefers bones, he brings home the minimum amount of dry dog food. The correct answer is a. (Note: Several students mistakenly thought that bones are not food and therefore assumed that Toby had to bring home at least 5 pounds of Puppy Chow. The question of how many pounds of Puppy Chow are bought then of course has 5 as the answer. We therefore decided also to accept d as an answer.)
- 3. The numbers can be rewritten as 2^{16} , 2^{18} , 3^{16} , 2^{64} , 2^{81} . The last of these is clearly the largest $(2^{81} > 4^{16} > 3^{16})$. The answer is **e**.
- 4. Let x be the other leg. The area is $60 = \frac{1}{2}(x)(15)$, so x = 8. The hypotenuse is $\sqrt{15^2 + 8^2} = 17$. The answer is \mathbf{c} .
- 5. Let t be the number of tricycles and b be the number of bicycles. Then 3t + 2b = 270 and b = 3t. Therefore, 3t + 2(3t) = 270, so t = 30. This means that b = 3t = 90, so there are 120 students at the school. The answer is e.
- 6. It must be the square of an even number. We have $42^2 = 1764$, $44^2 = 1936$, and $46^2 = 2116$. Only 1936 is in the required set of years. The answer is **a**.
- 7. n is odd and a multiple of 5. Therefore, it ends in 5. The answer is \mathbf{c} .
- 8. The line is y = 3x 1. This intersects the parabola when $3x 1 = x^2 x$, which rearranges to $0 = x^2 2x + 1 = (x 1)^2$. Therefore, x = 1. The answer is **c**.
- 9. Write $8 = 2^3$, $16 = 2^4$, $4 = 2^2$. The expression becomes

$$\frac{3\log_{10}(2) \times 4\log_{10}(2)}{\log_{10}(2) \times 2\log_{10}(2)} = 6.$$

The answer is \mathbf{e} .

- 10. Let ABC be the triangle, let O be the center of the circle, and let M be the midpoint of BC. Then triangle OMB is a 30-60-90 triangle. Since the circle has area π , its radius is 1, so OM has length 1. Therefore, MB has length $\sqrt{3}$, so BC has length $2\sqrt{3}$. The answer is **b**.
- 11. The sum of the angles in triangle ABC is 180, so ABC + ACB = 180 70 = 110. Since BD and CD bisect the angles, $DBC + DCB = \frac{1}{2}(ABC + ACB) = 55$. Since DBC + DCB + BDC = 180, we have BDC = 180 55 = 125. The answer is **d**.
- 12. Draw the graphs of $y = \log_{10}(x)$ and $y = \sin(x)$. The graphs cross once between 0 and π , and twice between 2π and 3π . The answer is **d**.

- 13. There are two choices for the driver. After the driver is seated, there are two choices remaining for the front-seat passenger. There are $3 \times 2 \times 1 = 6$ ways to seat the remaining passengers in the back. This gives $2 \times 2 \times 6 = 24$ total ways to seat the people. The answer is **d**.
- 14. When p is divided by 12, the remainder is 1, 5, 7, or 11 (the other possibilities give multiples of 2 or 3). Therefore, p = 12j + k, where k = 1, 5, 7, or 11. Squaring yields $p^2 = 144j^2 + 24jk + k^2$, which is a multiple of 12 plus k^2 . The value of k^2 is 1, 25, 49, or 121, each of which is one more than a multiple of 12. Therefore, p^2 is 1 more than a multiple of 12, so the remainder is 1. The answer is **a**.
- 15. Let s be the number of seniors, so the total number of players is s + 2. Each player plays s + 1 games, so the total number of games is $\frac{1}{2}(s+1)(s+2)$ (divide by 2 since (s+1)(s+2) counts each game twice, once for each player). Each game yields a total of 1 point awarded (either 0+1 or $\frac{1}{2} + \frac{1}{2}$). Therefore, the total number of points awarded is $\frac{1}{2}(s+1)(s+2)$. Let x be the common score of the seniors. Then $8 + x \times s = \frac{1}{2}(s+1)(s+2)$. This yields $s^2 + 3s 2xs = 14$, which says that 14 is a multiple of s. So s = 1, 2, 7, 14. Since s = 1, 2 yields negative x and s = 14 is too large, we must s = 7 (and s = 4). The answer is s = 5.
- 16. Since any digit except 1 can be used, there are $9^3 = 729$ integers from 0 to 999 that use no ones, hence 728 from 1 to 999. All of the integers from 1000 to 1999 use ones. From 2000 to 2009 there are 9 that do not use ones. The total is 737. The answer is \mathbf{c} .
- 17. We can ignore powers of x higher than x^2 . We have

$$P = (1 + kx + \frac{1}{2}k(k-1)x^2 + \cdots)(1 - (100 - k)x + \frac{1}{2}(100 - k)(99 - k)x^2 + \cdots).$$

The coefficient of x^2 is $\frac{1}{2}k(k-1) + \frac{1}{2}(100-k)(99-k) - k(100-k) = 2(k-45)(k-55)$. This is positive when $k \le 44$ or $k \ge 56$, so there are 89 values of k that give a positive coefficient. The answer is \mathbf{d} .

18. The area of $S_1 - C_1$ is $s^2 - (\pi/4)s^2$. The area of $C_2 - S_2$ is $\pi r^2 - 2s^2$. Therefore,

$$s^2/r^2 = 4\frac{\pi - 2}{4 - \pi} = \frac{8}{4 - \pi} - 4.$$

Since $3 < \pi < 3.2$, we have $8 < 8/(4-\pi) < 10$. Therefore, $4 < s^2/r^2 < 6$, so 2 < s/r < 2.5. The closest integer to s/r is 2, so the answer is **b**.

- 19. If C and D are telling the truth, then no one is lying. Therefore, either C or D is lying. If D is lying then someone else has the smallest, so one of A, B, C, E is also lying, which is not allowed. Therefore, C is lying and A, B, D, E are telling the truth. This allows only the possibility that E has the largest prime. The answer is **e**.
- 20. Let a = f(4) and b = f(1/4). Setting x = 4 yields a + 5b = 7. Setting x = 1/4 yields b + 5a = 13/4. Solving these two equations yields a = 37/96. The answer is e.
- 21. Let x be the vertical leg and y be the horizontal leg of the right triangle. Similar triangles yield the relation (x-1)/1 = 1/(y-1), so (x-1)(y-1) = 1, hence xy = x + y. The Pythagorean theorem yields $x^2 + y^2 = 15$. Therefore,

$$(x+y)^2 = x^2 + y^2 + 2xy = 15 + 2(x+y).$$

This yields (x+y-5)(x+y+3)=0, so x+y=5. The answer is **d**.

- 22. Dividing by y yields $y^2 = 4 + (5/y)$. Since 2 < y < 3, we have 5/3 < 5/y < 5/2, so $4 + (5/3) < y^2 < 4 + (5/2)$. This means the closest integer to y^2 is 6. The answer is **c**.
- 23. The amenable numbers are the 10 distinct permutations of 22211, the 10 distinct permutations of 33111, and the 20 distinct permutations of 52111. This gives a total of 40 amenable numbers. The answer is \mathbf{d} .
- 24. Let $a=\sqrt{x-1/x}$ and $b=\sqrt{1-1/x}$. Then a+b=x and $(a+b)(a-b)=a^2-b^2=x-1$. Therefore, a-b=(x-1)/x. Adding yields $2a=x+(x-1)/x=1+a^2$, which says that $(a-1)^2=0$. Therefore, a=1, so x-1/x=1. This yields $x=(1\pm\sqrt{5})/2$. Only $(1+\sqrt{5})/2$ satisfies the original equation. The answer is **b**.
- 25. Let s_k be the number of good permutations of the integers from 1 to k. Clearly $s_1 = 1$ and $s_2 = 2$. It is easy to see that k must occur in one of the last 2 positions. If k occurs in the last position, then a good permutation is simply a good permutation of 1 to k-1 with k appended. If k occurs in the next to last place, then k-1 must occur in the last place. The first k-2 numbers are therefore a good permutation of 1 to k-2. It follows that $s_k = s_{k-1} + s_{k-2}$. Since $s_1 = 1$ and $s_2 = 2$, we see that the numbers s_k are Fibonacci numbers and $s_{10} = 89$. The answer is \mathbf{d} .