THE 40 ${ }^{\text {th }}$ ANNUAL (2018) UNIVERSITY OF MARYLAND HIGH SCHOOL MATHEMATICS COMPETITION

PART I SOLUTIONS

1. If the smallest of the four consecutive integers is x, then we must have $x+(x+1)+(x+2)+$ $(x+3)=26$. Thus, $4 x+6=26$, which implies $x=5$. So, the product of the four integers is $5 \times 6 \times 7 \times 8=1680$. The answer is \mathbf{d}.
2. Suppose George uses x blocks of height 30 feet and y blocks of height 21 feet. We must have $30 x+21 y=555$. Since 30 and 555 are divisible by 5 , the integer y must also be divisible by 5 . If we set $y=0$, we get $x=\frac{111}{6}$ which is not an integer. Thus, the smallest value of y is 5 . This yields $x=15$ and $y=5$. The answer is \mathbf{a}.
3. $\sin \left(\left(60 \cos \left(120^{\circ}\right)\right)^{\circ}\right)=\sin \left((60 \times(-1 / 2))^{\circ}\right)=\sin \left(-30^{\circ}\right)=-1 / 2$. The answer is \mathbf{a}.
4. By properties of \log we have

$$
4+\log (3)+\log (2 / 3)+\log (5)=4+\log (3 \times 2 / 3 \times 5)=4+\log (10)=4+1=5
$$

The answer is \mathbf{c}.
5. The total score in this class is $24 \times 75=1800$. The total score of everybody except for Ethan and Emma is $22 \times 73=1606$. Therefore the total score of Ethan and Emma is $1800-1606=194$. Therefore the average score of Ethan and Emma is 97. The answer is e.
6. The lines $x=2$ and $2 y+3 x=18$ intersect at $(2,6)$. The lines $y=3$ and $2 y+3 x=18$ intersect at $(4,3)$. The lines $x=2$ and $y=3$ intersect at $(2,3)$. Therefore the two legs of this right triangle are of length 3 and 2 . This means the area of the triangle is $3 \times 2 / 2=3$. The answer is d.
7. Normally in each hour there are two instances that the hour hand and the minute hand of the clock lie on a straight line. The two exceptions are between $12: 01 \mathrm{pm}$ and 1 pm , between 11 pm and $11: 59 \mathrm{pm}$, in which there is only one instance that the minute hand and the hour hand lie on a straight line. However the instance 6 pm is counted twice, once between 5 pm and 6 pm and once between 6 pm and 7 pm . Thus the answer is $12 \times 2-3=21$.

Note: This answer choice is not listed. We have given full credit to all students for this problem.
8. The x-intercepts of the two lines are $7 / a$ and $5 / 10=1 / 2$. Therefore, we must have $7 / a=1 / 2$, which implies $a=14$. The answer is \mathbf{b}.
9. Right after the k-th time Alex walks one minute he will have spent $(60+1)+(60+2)+(60+3)+$ $\cdots+(60+(k-1))+60=60 k+\frac{k(k-1)}{2}$ seconds walking and resting combined. We are looking for the smallest k for which this amount is at least $18 \times 60=1080$. We can see that $k=16$ gives us precisely 1080 seconds. Therefore, Alex will have spent 16 minutes walking. Since his speed is $4 \mathrm{ft} / \mathrm{sec}$, the distance between his school and home is $16 \times 60 \times 4=3840 \mathrm{ft}$. The answer is \mathbf{b}.
10. We have $100000=2^{5} \times 5^{5}$. Neither m nor n can have both 2 and 5 as factors. Therefore, m and n must be 2^{5} and 5^{5}. Thus $m+n=32+3125=3157$. The answer is \mathbf{e}.
11. Note that from each pair of numbers $(1,10),(2,9), \ldots,(5,6)$ either both numbers are in X or neither is in X. Therefore, including the empty set, there are 2^{5} possible such sets. Removing the empty set we get 31 balanced subsets. The answer is \mathbf{d}.
12. Note that the area of a triangle $A B C$ is evaluated by $\frac{1}{2}|A B| \cdot|A C| \sin A$. Thus, if the sides $A B$ and $A C$ are of lengths 15 and 20 , the area is maximized when $A=90^{\circ}$. In other words the area is maximized when the triangle is a right triangle. The answer is \mathbf{c}.
13. Note that $2[A B O]=|A O| \cdot|B O|, 2[C D O]=|C O| \cdot|D O|, 2[B C O]=|B O| \cdot|C O|$, and $2[A D O]=$ $|A O| \cdot|D O|$. This implies $[A B O] \cdot[C D O]=[B C O] \cdot[A D O]$. Therefore $12 \times 21=14 \times[A D O]$. The answer is \mathbf{c}.
14. $3 x^{2}-10 x y+3 y^{2}=0$. By the quadratic formula we get $x=\frac{10 y \pm \sqrt{100 y^{2}-36 y^{2}}}{6}=\frac{10 y \pm 8 y}{6}=$ $3 y, \frac{y}{3}$. Therefore $\frac{x}{y}=3,1 / 3$. We have $(x+y) /(x-y)=(3 y+y) /(3 y-y)=2$ or $x=$ $(y / 3+y) /(y / 3-y)=-2$. The answer is \mathbf{a}.
15. Let H be the foot of the perpendicular from C to ℓ. We know $\angle H A C=75^{\circ}$. Therefore $|C H|=|A C| \sin (75)$. We know $|A C|=\sqrt{2}$. We also have

$$
\sin (75)=\sin (45+30)=\sin (45) \cos (30)+\cos (45) \sin (30)=\frac{\sqrt{6}+\sqrt{2}}{4}
$$

Therefore, $|\mathrm{CH}|=(\sqrt{3}+1) / 2$. The answer is \mathbf{b}.
16. We first find all points (m, n) where m, n are nonnegative integers that lie on the line $10 m+99 n=$ 990. Note that $10 m+99 n=990 \Longrightarrow 99 \mid m$ and $10 \mid n$ (since 99 and 10 are relatively prime). If m and n were both positive, we would have $10 m+99 n \geq 2 \cdot 990$, which is a contradiction. Thus the only nonnegative solutions to $10 m+99 n=990$ are those in which one of m and n are zero - specifically, $(99,0)$ and $(0,10)$.

Let B denote the box region in the plane defined by

$$
B=\{(x, y) \mid 0 \leq x \leq 99,0 \leq y \leq 10\},
$$

which contains $11 \cdot 100=1100$ integer points. The line $10 x+99 y=990$ connects the two vertices $(99,0)$ and $(0,10)$ and splits B into two triangles, B_{1} and B_{2}. By symmetry, there are an equal number of integer points in B_{1} and B_{2}. Moreover, as noted above, there are only two integer points that lie in both B_{1} and B_{2}. Thus the desired answer is

$$
(1100-2) / 2+2=551
$$

The correct answer is \mathbf{e}.
17. We will work mod 124. Using the properties of this sequence we obtain: $n_{1} \equiv 2 n_{0}+1 \bmod 124$. Thus, $n_{2} \equiv 2\left(2 n_{0}+1\right)+1=2^{2} n_{0}+2+1$, which implies $n_{3}=2^{3} n_{0}+2^{2}+2+1$. We can see that $n_{\ell}=2^{\ell} n_{0}+2^{\ell}-1$. Note that $n_{\ell} \equiv n_{0} \bmod 124$ iff $124 \mid\left(2^{\ell}-1\right)\left(n_{0}+1\right)$. Since $124=4 \cdot 31$, we have $4 \mid\left(n_{0}+1\right)$. Therefore $n_{0}+1 \equiv 4$ or $0 \bmod 124$. The latter is impossible,
because otherwise $n_{0} \equiv-1 \bmod 124$, which implies $n_{1} \equiv 2(-1)+1=-1 \bmod 124$, which is a contradiction. Therefore $n_{0}+1 \equiv 4 \bmod 124$, which means $31 \mid 2^{\ell}-1$, which implies $\ell \geq 5$. For $n_{0}=3$, we get the sequence $3,7,15,31,63,3$. The answer is \mathbf{d}.
18.

$$
\begin{aligned}
\prod_{i=1}^{99}\left[1+\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{i+1}}\right)-\sqrt{\frac{1}{i}-\frac{1}{i+1}}\right] & =\prod_{i=1}^{99}\left[1+\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{i+1}}-\sqrt{\frac{(i+1)-i}{i(i+1)}}\right] \\
& =\prod_{i=1}^{99}\left[1+\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{i+1}}-\frac{1}{\sqrt{i(i+1)}}\right] \\
& =\prod_{i=1}^{99}\left(\left[1+\frac{1}{\sqrt{i}}\right]\left[1-\frac{1}{\sqrt{i+1}}\right]\right) \\
& =\left[1+\frac{1}{\sqrt{1}}\right]\left(\prod_{i=2}^{99}\left[1+\frac{1}{\sqrt{i}}\right]\left[1-\frac{1}{\sqrt{i}}\right]\right)\left[1-\frac{1}{\sqrt{100}}\right] \\
& =[2]\left(\prod_{i=2}^{99}\left[1-\frac{1}{i}\right]\right)\left[\frac{9}{10}\right] \\
& =[2]\left(\prod_{i=2}^{99}\left[\frac{i-1}{i}\right]\right)\left[\frac{9}{10}\right] \\
& =[2]\left(\frac{1}{99}\right)\left[\frac{9}{10}\right] \\
& =\frac{1}{55}
\end{aligned}
$$

The answer is \mathbf{c}.
19. This octahedron can be divided into two pyramids. Since the distance between centers of opposite faces of cube is 1 , the height of each pyramid is $1 / 2$. The base of each pyramid is a square whose side length is the distance between centers of two adjacent faces. Let F_{1} and F_{2} be two adjacent faces of this cube. From the centers C_{1} and C_{2} of F_{1} and F_{2} drop perpendiculars to the side that is shared by F_{1} and F_{2}. Let H be the foot of this perpendicular. We have $\left|C_{1} H\right|=\left|C_{2} H\right|=1 / 2$. Thus by the Pythagorean Theorem $\left|C_{1} C_{2}\right|^{2}=1 / 2$, Therefore, the volume of each pyramid is $\frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{12}$, which implies the volume of the octahedron is $1 / 6$. The answer is \mathbf{b}.
20. Let s and A be the semi-perimeter and area of triangle $A B C$, respectively. We know the inradius of $A B C$ is A / s. Since triangle $A D F$ and $A C B$ are similar with the ratio of similarity $1 / 6$, the perimeter of $A D F$ is $2 s / 6=s / 3$. Since $A E G$ and $A C B$ are similar with the ratio of similarity $3 / 6$, the area of $A D F$ is $A / 4$. Therefore, by assumption we have $s / 3=3 A / 4$, which simplifies to $4 s=9 A$. Therefore, $A / s=4 / 9$. The answer is \mathbf{c}.
21. Let $\lfloor x\rfloor=k$. Then we have $k^{2} \leq x\lfloor x\rfloor<(k+1) k$. Therefore $k^{2} \leq n<k^{2}+k$. Thus, for a given k, there are $k^{2}+k-k^{2}=k$ possible values of n. Note that $44 \times 45=1930<2018$ but $45^{2}=2025>2018$. Thus the answer is $\sum_{k=1}^{44} k=\frac{44 \times 45}{2}=990$. The answer is \mathbf{e}.
22. There are four such triangles with $A=90^{\circ}$, two on each side of line $A B$. Two of these four are reflections of the other two about the line $A B$. Thus, the sum of the x-coordinates of these four points C is four times the x-coordinate of A, which is $4 \times 2=8$.
Using the same logic for when $B=90^{\circ}$ we obtain $4 \times 4=16$.
There are also four more such triangles with $C=90^{\circ}$, two on each side of line $A B$. The two on one side of $A B$ are obtained by reflecting the other two about the midpoint of $\overline{A B}$. The midpoint of $\overline{A B}$ is $(3,1)$. Thus the sum of the x-coordinates of these points is $4 \times 3=12$.
The total of all x-coordinates is $8+16+12=36$, thus the answer is a.
23. Note that $f(1)=f(2)=f(3)=f(4)$, however the value of f changes at 5 and remains the same until $n=9$, i.e. $f(5)=\cdots=f(9)$. Then it changes and stays the same until $n=14$. Thus the value of f changes precisely $\lfloor 2018 / 5\rfloor=403$ times. Since it starts from 0, we obtain $1+403=404$. The answer is \mathbf{b}.
24. Let $n=\sqrt[3]{2+x}+\sqrt[3]{2-x}$. Note that $n>\sqrt[3]{x}+\sqrt[3]{-x}=0$. Cube both sides to obtain $n^{3}=2+x+2-x+3 \sqrt[3]{4-x^{2}}(\sqrt[3]{2+x}+\sqrt[3]{2-x})=4+3 n \sqrt[3]{4-x^{2}}$. This shows $n^{3}<4+3 n \sqrt[3]{4}$. Thus, $n^{2}<4 / n+3 \sqrt[3]{4} \leq 4+5=9$, which is only possible for $n=1,2$.
If $n=1$, then $1=4+3 \sqrt[3]{4-x^{2}}$. This implies $4-x^{2}=-1$, which shows $x=\sqrt{5}$.
If $n=2$, then $8=4+6 \sqrt[3]{4-x^{2}}$. This implies $4-x^{2}=8 / 27$, which shows $x=\sqrt{100 / 27}=\frac{10}{3 \sqrt{3}}$.
The sum of the two possible values of x is $\sqrt{5}+\frac{10}{3 \sqrt{3}}$. The answer is \mathbf{d}.
25. Factoring the quadratic we obtain $(x+3 y)(3 x+7 y)=2^{7} \times 5^{6}$. Note that $(x+3 y)+(3 x+7 y)=$ $4 x+10 y$ is even. Thus $x+3 y$ and $3 x+7 y$ are both even. If $x+3 y=2 a$ and $3 x+7 y=2 b$, then $x=3 b-7 a$ and $y=3 a-b$. Therefore we need to find the number of pairs of integers (a, b) for which $(2 a)(2 b)=2^{7} \times 5^{6}$, or equivalently $a b=2^{5} \times 5^{6}$. The number of positive divisors of $2^{5} \times 5^{6}$ is $6 \times 7=42$. The number of all divisors is 84 . The answer is \mathbf{d}.

