THE $41^{\text {st }}$ ANNUAL (2019) UNIVERSITY OF MARYLAND HIGH SCHOOL MATHEMATICS COMPETITION

PART I SOLUTIONS

1. Writing all of the answer choices with base 2 , we have $4^{12}=16^{6}=2^{24}, 32^{5}=2^{25}$, and $8^{9}=2^{27}$. The answer is \mathbf{e}.
2. Sam gives Carlos x^{2}. Carlos gives Fiona x^{6}, and Fiona evaluates $\sqrt[4]{x^{6}}=\sqrt{x^{3}}=1000$. Thus, $x^{3}=1000^{2}=10^{6}$, which implies $x=10^{2}=100$. The answer is \mathbf{c}.
3. The cockroach crosses the x-axis each time $y=0$. Thus, we need to solve $x^{5}-x=0$. This implies $x\left(x^{4}-1\right)=0$. Thus, $x=0$, or $x^{4}=1$. Therefore, $x=0, \pm 1$. The answer is \mathbf{c}.
4. $6!=2 \cdot 3 \cdot 2^{2} \cdot 5 \cdot 2 \cdot 3=2^{4} \cdot 3^{2} \cdot 5$. Using the properties of log, we obtain

$$
\log (6!)=4 \log (2)+2 \log (3)+\log (5) .
$$

Thus, $a+b+c=4+2+1=7$. The answer is \mathbf{d}.
5. Multiplying the first equation by 3 and adding it to the second equation we obtain $5 y=5$, and thus $y=1$, and therefore, $x=1$. This means $(1,1)$ must be on the last line, which implies $5+k=7$, and thus $k=2$. The answer is a.
6. Since N is not a prime, it must have at least two prime factors. The smallest primes more than 100 are 101 and 103. Since N is not a perfect square N cannot be 101^{2}. Thus, $N=101 \cdot 103=10403$ is the smallest such integer. The answer is \mathbf{b}.
7. The angle sum of an n-gon is $180(n-2)$. Each angle of a regular n-gon is $180(n-2) / n$ degrees, which is equal to $180-\frac{360}{n}$. So, 360 must be a multiple of n. Therefore, the largest value of n is 360 . The answer is \mathbf{b}.
8. By assumption, the number of peaches that Sammy picks must be both a multiple of 5 and also a multiple of 3 . Thus, Sammy must pick $15 k$ peaches, where k is a positive integer. By assumption Sally and Sunny must pick $3 k$ and $5 k$ peaches, respectively. Therefore, the total number of peaches that they all picked together must be $15 k+3 k+5 k=23 k$, which is a multiple of 23 . The largest multiple of 23 less than 200 is $23 \cdot 8=184$. The answer is \mathbf{a}.
9. Using the sum of the terms of an arithmetic sequence we obtain $17+18+\cdots+84=\frac{17+84}{2} \cdot 68=$ $101 \cdot 34$. Similarly $1+4+\cdots+100=\frac{1+100}{2} \cdot 34=101 \cdot 17$. Thus the desired ratio is 2 . The answer is \mathbf{c}.
10. Using the Pythagorean Theorem, we have $d^{2}+4000^{2}=(4000+1 / 2)^{2}=4000^{2}+4000+1 / 4$. Thus, $d=\sqrt{4000.25}$, which is between 60 and 70 . The answer is \mathbf{d}.
11. Suppose the rate of drinking water by the elephant is r liters per minute and the volume of the tank is V. Using the formula time $=\frac{\text { volume }}{\text { rate }}$ and the given information we obtain the following
equations:

$$
\left\{\begin{array}{l}
\frac{V}{r-4}-\frac{V}{r-2}=40 \\
\frac{V}{r-2}-\frac{V}{r-1}=10
\end{array}\right.
$$

This implies $V(r-2)-V(r-4)=40(r-2)(r-4)$, and $V(r-1)-V(r-2)=10(r-1)(r-2)$. Therefore, $2 V=40(r-2)(r-4)$ and $V=10(r-1)(r-2)$. Dividing the two equations we get $2=4(r-4) /(r-1)$, which implies $r-1=2(r-4)$, and hence $r=7$. Therefore, $V=20(7-2)(7-4)=300$. The answer is \mathbf{e}.
12. If the units digit is 0 , then there are 9 possibilities for the hundreds digit and 8 possibilities for the tens digit. Thus we get $9 \times 8=72$ possible integers. If the units digit is $2,4,6$, or 8 , then there are 8 possibilities for the hundreds digit and also 8 possibilities for the tens digit. This gives us $4 \times 8 \times 8=256$ possibilities. Adding the two we get $72+256=328$. The answer is \mathbf{c}.
13. Removing the cubes with the icing we get a rectangular prism of size $(n-1) \times(n-2) \times(n-2)$. Since $(n-2)^{2}$ is a perfect square, $n-1$ must be a perfect square. The answer is e.
14. We know $\sin (x)=\cos (\pi / 2-x)$. Given $\cos (\pi / 2-x)=\cos (3 x)$, we obtain $\pi / 2-x=2 \pi k \pm$ $3 x$, which implies $x=\pi k-\pi / 4$ or $x=-\pi k / 2+\pi / 8$. Given $0 \leq x \leq 2 \pi$, we obtain $x=$ $3 \pi / 4,7 \pi / 4, \pi / 8,5 \pi / 8,9 \pi / 8,13 \pi / 8$. The answer is \mathbf{b}.
15. After s seconds, the hour hand moves $s \cdot 30 / 3600=s / 120$ degrees. The minute hand moves $s \cdot 30 / 300=s / 10$ degrees. The second hand moves $6 s$ degrees. Using the assumption, $6 s-s / 120=$ $90+s / 10-6 s$. Solving this we get $s=10800 / 1427$. The answer is \mathbf{b}.
16. Note that the two right triangles $A B E$ and $A D F$ are congruent, by (HL). Therefore, $\angle E A B=$ 15°. Thus, $A E=\sec \left(15^{\circ}\right)$. Since $A E F$ is equilateral, each altitude of $A E F$ is $\sqrt{3} A E / 2$. Thus,

$$
[A E F]=\frac{\sqrt{3}}{4} A E^{2}=\frac{\sqrt{3}}{4 \cos ^{2}\left(15^{\circ}\right)}=\frac{\sqrt{3}}{2\left(1+\cos \left(30^{\circ}\right)\right)}=\frac{\sqrt{3}}{2+\sqrt{3}}=2 \sqrt{3}-3 .
$$

The answer is \mathbf{a}.
17. We must have

$$
100 a+10 b+c=196 c+14 b+a \Rightarrow 99 a=4 b+195 c .
$$

Since 99 and 195 are both divisible by $3, b$ must be a multiple of 3 as well. Setting $b=3 d$, we obtain $33 a=4 d+65 c$, which implies $4 d-c=33(a-2 c)$. Therefore, $4 d-c$ must be divisible by 33. Since, $-10<4 d-c<16$, we must have $4 d=c$. This implies $33 a=4 d+260 d=264 d$, which implies $a=8 d$. Since $0<a<10$, we must have $d=1$, and thus $b=3$. The answer is \mathbf{b}.

Note: The desired number is 834 .
18. Unfolding the south and north walls of the room we can find the shortest distance from the initial to the terminal point of the path by considering a segment connecting them. After unfolding, the ant must move 120 units in the y direction and 50 units in the x direction. Thus the shortest distance is $\sqrt{50^{2}+120^{2}}=130$. The answer is \mathbf{e}.
19. The two cells in the first column can be colored in 6 different ways. For each coloring of a column, there are precisely three valid coloring of the next column. Therefore the answer is $6 \cdot 3^{99}=2 \cdot 3^{100}$. The answer is \mathbf{c}.
20. Let O_{1}, O_{2}, and O be centers of C_{1}, C_{2}, and ω, respectively. Let C be the point of intersection of ω with ℓ. Drop a perpendicular from O_{1} to $O C$ and call the foot of this perpendicular H. Using the Pythagorean Theorem in triangle $O_{1} H O$, we obtain $|A C|^{2}+(r-1)^{2}=(r+1)^{2}$, which implies $|A C|=2 \sqrt{r}$. Similarly $|B C|=8 \sqrt{r}$. Now, if C lies between A and B, we have $|A B|=|A C|+|B C|$. Otherwise $|A B|=|B C|-|A C|$. Therefore, $20=10 \sqrt{r}$ or $20=6 \sqrt{r}$, which implies $r=4$ or $r=100 / 9$. Thus, the sum of the two possible radii is $136 / 9$. The answer is \mathbf{b}.
21. Define a new sequence b_{n} by $b_{n}=a_{n}+0.5$ for every $n \geq 1$. By assumption $b_{n}=a_{n-1}^{2}+a_{n-1}-$ $1.75=\left(a_{n-1}+0.5\right)^{2}-2=b_{n-1}^{2}-2$. We know $b_{1}=2+2^{-1}$, $b_{2}=\left(2+2^{-1}\right)^{2}-2=2^{2}+2^{-2}$, $b_{3}=\left(2^{2}+2^{-2}\right)^{2}-2=2^{4}+2^{-4}$. We can see that $b_{n}=2^{2^{n-1}}+2^{-2^{n-1}}$. (This can be proved by induction.) Therefore, $a_{10}=0.5+2^{2^{9}}+2^{-2^{9}} \approx 0.5+2^{2^{9}}$. The answer is \mathbf{c}.
22. Note that $1.2: 1.6: 2=3: 4: 5$, and thus $A B C$ is a right triangle. Assume $\angle B A C=90^{\circ}$, $\angle A B C=\alpha, \angle A C B=\beta,|A C|=1.2$, and $|A B|=1.6$. Let M be the midpoint of $B C$. Let ω_{1}, ω_{2}, and ω_{3} be three unit circles centered at A, B and C, respectively. Note that ω_{2} and ω_{3} are tangent and thus, there is only one point, i.e. M, that is within 1 unit of B and C. We need to find the area of the region inside both ω_{1} and ω_{2}. Let N be the other point of intersection of ω_{1} and ω_{2}. The area of sector $B M N$ is $\frac{2 \alpha}{2 \pi} \cdot \pi=\alpha$. The area of triangle $B M N$ is $0.6 \times 0.8=0.48$. Therefore, the answer is $2 \alpha-0.96+2 \beta-0.96=2(\alpha+\beta)-1.92=\pi-1.92$. The answer is \mathbf{e}.
23. There are several possible ways that the cricket could be at or above 5 after 5 moves.

Case I. All moves are to the right. The probability of that happening is $\left(\frac{2}{3}\right)^{5}=\frac{32}{3^{5}}$.
Case II. There are four moves of +2 units and one move of -1 unit. The probability of that happening is $\left(\frac{1}{3}\right)^{5} \cdot 5=\frac{5}{3^{5}}$.
Case III. There are three moves of +2 units, one move of +1 unit and one move of -1 unit. The probability of that happening is $\left(\frac{1}{3}\right)^{5} \cdot 5 \cdot 4=\frac{20}{3^{5}}$.
Case IV. There are two moves of +2 units, two move of +1 unit and one move of -1 unit. The probability of that happening is $\left(\frac{1}{3}\right)^{5} \cdot 5 \cdot\binom{4}{2}=\frac{30}{3^{5}}$.
The answer is $\frac{32+5+20+30}{3^{5}}=\frac{87}{3^{5}}=\frac{29}{81}$. The answer is \mathbf{d}.
24. Let H be the circumcenter of triangle $D P A$. Note that $E F$, and $G H$ are perpendicular bisectors of $A P$ and $C P$, respectively. Therefore, $E F \| G H$ and that the distance between $E F$ and $G H$ is half of $|A C|$. Similarly $F G \| H E$ and the distance between $F G$ and $H E$ is half of $|B D|$. Since $E F G H$ is a parallelogram, we have $[E F G H]=60$. We have $[E F G H]=\frac{|A C|}{2}|E F| \geq$ $|A C| \cdot|B D| / 4$, which implies $|A C| \cdot|B D| \leq 240$. We have

$$
[A B C D]=[A B D]+[C B D] \leq|A P| \cdot|B D| / 2+|C P| \cdot|B D| / 2=|A C| \cdot|B D| / 2 \leq 120
$$

The equality occurs when $A B C D$ is a square. The answer is \mathbf{d}.
25. Let $f(x, y)=x^{3}-y^{3}+x^{2} y-x y^{2}-2 x y-7 x^{2}+5 y^{2}+11 x+y-5$. Note that $f(0, y)=-y^{3}+5 y^{2}+y-5$. We can see that $f(0,1)=f(0,-1)=f(0,5)=0$. Therefore,

$$
f(0, y)=-(y-1)(y+1)(y-5)=(y-1)(-y-1)(y-5) .
$$

Similarly we can see that

$$
f(x, 0)=(x-1)^{2}(x-5)
$$

Matching the two, we may guess that $f(x, y)$ has factors of $x+y-1, x-y-1$, and $x+y-5$. Indeed we can see that

$$
x^{3}-y^{3}+x^{2} y-x y^{2}-2 x y-7 x^{2}+5 y^{2}+11 x+y-5=(x+y-1)(x-y-1)(x+y-5) .
$$

Thus, $f(x, y)=0$, implies $x+y=1$, or $x-y=1$, or $x+y=5$. The first one has two solutions, the second has 100 solutions and the last one has 6 solutions. The first and second have exactly one common solution, the second and last also have one common solution. Thus, the answer is $2+100+6-1-1=106$. The answer is \mathbf{e}.

