THE $33^{\text {rd }}$ ANNUAL (2011) UNIVERSITY OF MARYLAND
 HIGH SCHOOL MATHEMATICS COMPETITION

PART II SOLUTIONS

1. (a) Let the 3 -tuple (a, b, c) denote the state with a, b, and c quarts of water in the first, second, and third bucket, respectively. Then the initial state is represented by $(8,0,0)$, and a procedure which achieves 6 quarts in the first bucket is $(8,0,0) \rightarrow(3,5,0) \rightarrow(3,2,3) \rightarrow(6,2,0)$.
(b) From the position $(6,2,0)$ obtained in part (a), we can proceed as follows:

$$
(6,2,0) \rightarrow(6,0,2) \rightarrow(1,5,2) \rightarrow(1,4,3) \rightarrow(4,4,0) .
$$

2. First Solution:

(a) Let $n=2011$. The triangle with vertices at $A(0,0), B(n, 1)$, and $C(n+1,1)$ has two sides $A B$ and $A C$ of length greater than n. The area of $A B C$ is clearly $1 / 2$, as its side $B C$ has length 1 and the height subtending to $B C$ is also equal to 1 .
(b) Consider the point $D(2 n+1,2)$. Then

$$
\overrightarrow{A B}+\overrightarrow{A C}=(n, 1)+(n+1,1)=(2 n+1,2)=\overrightarrow{A D}
$$

and therefore the quadrilateral $A B C D$ is a parallelogram. It is easy to check that the three sides of triangle $A B D$ each have length greater than n. Furthermore, since $C D$ is parallel to $A B$, the area of $A B D$ equals the area of $A B C$, and so is again $1 / 2$.

Second Solution to (b): We use the formula for the area E of a triangle T with vertices at (x_{1}, y_{1}), $\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$, namely,

$$
E=\frac{1}{2}| | \begin{array}{lll}
x_{1} & y_{1} & 1 \tag{1}\\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}| | .
$$

We may as well take $\left(x_{3}, y_{3}\right)=(0,0)$, in which case (1) gives $E=\left|x_{1} y_{2}-x_{2} y_{1}\right| / 2$. From this it is easy to determine the two remaining vertices of T so that the required conditions hold, for example one can take $\left(x_{1}, y_{1}\right)=(1, n)$ and $\left(x_{2}, y_{2}\right)=\left(n, n^{2}+1\right)$, where $n=2011$.
3. Let A denote the set of rounds i which Alice won, and B the set of rounds j which Bob won. Since Alice has an end profit of $\$ 2011$, we have

$$
\begin{equation*}
\sum_{i \in A} 2^{i-1}-\sum_{j \in B} 2^{j-1}=2011 \tag{2}
\end{equation*}
$$

On the other hand, since there are exactly 40 rounds, we have

$$
\begin{equation*}
\sum_{i \in A} 2^{i-1}+\sum_{j \in B} 2^{j-1}=1+2+2^{2}+\cdots+2^{39}=2^{40}-1 . \tag{3}
\end{equation*}
$$

Adding equations (2), (3) and dividing the result by 2 gives

$$
\sum_{i \in A} 2^{i-1}=\frac{1}{2}\left(2^{40}+2010\right)=2^{39}+1005=2^{39}+2^{9}+2^{8}+2^{7}+2^{6}+2^{5}+2^{3}+2^{2}+2^{0}
$$

where the last equality is equivalent to the binary expansion 1111101101 of 1005 . We conclude that Alice wins in nine rounds, namely rounds $1,3,4,6,7,8,9,10$, and 40 .
4. Let us call a 15 -digit string of 3 's and 7 's a 'word'. If x and y are any two words, let $d(x, y)$ denote the number of entries in which x and y differ. Say that there are n ID numbers x_{1}, \ldots, x_{n} which are assigned to the n students in the school. For each i with $1 \leq i \leq n$, there are exactly 16 words y which differ from x_{i} in at most one entry, i.e., such that $d\left(x_{i}, y\right) \leq 1$. Let S_{i} denote the set of these 16 words. For any $i \neq j$, there is no word y such that both $d\left(x_{i}, y\right) \leq 1$ and $d\left(x_{j}, y\right) \leq 1$, since then x_{i} and x_{j} would differ in at most two entries, contrary to our assumption. It follows that $S_{i} \cap S_{j}=\emptyset$ for any $i \neq j$, in other words that the sets S_{i} are mutually disjoint. Therefore the total number of words contained within these sets (which is $16 n$) is less than or equal to the number of all possible words, which is 2^{15}. Since $16 n \leq 2^{15}$, we conclude that $n \leq 2^{11}=2048$.
5. (a) The lines $A B, B C$, and $A C$ divide the plane into seven regions, only one of which has finite area (the one which bounds the interior of triangle $A B C$). If P is outside of $A B C$, then it must lie in one of the three unbounded regions which share a side with $A B C$ (otherwise one of the triangles $P A B, P B C$, and $P C A$ would contain the other two). Suppose that P lies outside of $A B C$ but in between the two rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$. Then triangles $P B A$ and $P B C$ share a side $P B$ and have the same area. We deduce that points A and C are equidistant from the line $P B$, and therefore $P B$ is parallel to $A C$. We see similarly that $P C$ is parallel to $A B$, and hence that $A B P C$ is a parallelogram. Now the triangles $P B A$ and $P B C$ also have the same perimeter, and $|A B|=|P C|$, hence $|A P|=|B C|$, i.e., the diagonals of the parallelogram $A B P C$ are equal. We deduce that $A B P C$ is a rectangle, and so triangle $A B C$ has a right angle at vertex A.
(b) Since the triangles $P A B$ and $P A C$ have the same perimeter, we have $|B A|+|B P|=|C A|+$ $|C P|=r$, where r is some positive real number. We deduce that the vertices B and C lie on the locus of all points M in the plane of $A B C$ such that $|M A|+|M P|=r$, which is an ellipse \mathcal{E} with foci at A and P. In addition, since triangles $P A B$ and $P A C$ have the same area and share a common side $A P$, points B and C have the same distance from the axis $A P$ of \mathcal{E}. Since the line $A P$ is an axis of symmetry for \mathcal{E}, we deduce that B is the reflection of C about this line (the only other possibility, that $B C$ passes through the center of the ellipse, must be excluded since the side $B C$ does not intersect the line segment $A P$). It follows that triangles $P A B$ and $P A C$ are equal to each other, and in particular that $|A B|=|A C|$. In a similar manner, one shows that $|A B|=|B C|$, and hence that $A B C$ is an equilateral triangle.

