THE 35^{th} ANNUAL (2013) UNIVERSITY OF MARYLAND HIGH SCHOOL MATHEMATICS COMPETITION

PART II SOLUTIONS

- 1. The sum of the integers in the first row of the array is $S := 1 + 2 + \dots + 10 = 55$. The sum of the numbers in the second row is $2 + 4 + \dots + 20 = 2(1 + 2 + \dots + 10) = 2S$, and similarly the sum of the numbers in the k-th row is kS, for $1 \le k \le 10$. Therefore the required total sum is $S + 2S + \dots + 10S = (1 + 2 + \dots + 10)S = S^2 = 3025$.
- 2. Since angle $\angle DCE = 60^{\circ}$ in the right triangle CDE, we have |CE| = 2|CD|. Since triangle AEF is equal to triangle CDE, we have |CD| = |AE|. If x = |AC|, we deduce that |CD| = |AC|/3 = x/3 and $|DE| = |CD| \tan 60^{\circ} = x\sqrt{3}/3$. The area of ABC is given by the formula $x^2\sqrt{3}/4$, and the area of DEF is given by $x^2\sqrt{3}/12$, and hence equals 1/3 of the area of ABC, which is known to be 1 square unit. The area of DEF is therefore equal to 1/3 (in square units).

- 3. Suppose that S_n is a symmetric triangular set of points as in the figure, but with n points in the bottom row. We claim that if a collection of m lines has the property that for every point in the set, there is at least one line in the collection that passes through that point, then $m \ge n$. We prove the claim by induction on n. The claim is clearly true when n = 1. Assume that the claim holds for the set S_{n-1} , and we will prove that it holds for S_n . Consider a collection of m lines with the stated property. If one of the lines passes through two points in the bottom row of S_n , then it passes through all the n points in the bottom row. Since removal of this row from S_n results in the set S_{n-1} , which is covered by the remaining m-1 lines, the inductive hypothesis gives $m-1 \ge n-1$, and hence $m \ge n$. If no lines in the collection pass through more than one point in the bottom row, then clearly $m \ge n$ since each of the n points in this row must be contained in at least one line in the collection, and the proof.
- 4. The horizontal grid lines contained in the interior of P divide the polygon into a union of two triangles and a number of trapezoids with mutually disjoint interiors.

If the lengths of these horizontal grid lines are a_1, \ldots, a_p going from top to bottom as in the figure, then the two triangles at the ends have areas $a_1/2$ and $a_p/2$, while the k-th trapezoid has area $(a_k + a_{k+1})/2$, for $1 \le k \le p - 1$. The sum of these areas is

$$\frac{a_1}{2} + \frac{a_1 + a_2}{2} + \frac{a_2 + a_3}{2} + \dots + \frac{a_{p-1} + a_p}{2} + \frac{a_p}{2} = a_1 + a_2 + \dots + a_p = H.$$

We deduce that H is equal to the area of P. A similar argument proves that V is equal to the area of P as well. Therefore, we have H = V.

5. We will prove that the game is fair exactly when k is not a multiple of 3. The set $X = \{1, 2, ..., 2013\}$ is a union of the 671 three element subsets $S_1 = \{1, 2, 3\}, S_2 = \{4, 5, 6\}, ..., S_{671} = \{2011, 2012, 2013\}$. Let A be any subset of X with k elements, and let [A] denote the remainder when we divide the sum of all the numbers in A by 3.

If k is not divisible by 3, then there must be an index i with $A \cap S_i$ having 1 or 2 elements. Let i_o be the smallest such index, and define a function $f: X \to X$ by f(n) = n, if $n \notin S_{i_0}$, f(n) = n + 1, if $n \in S_{i_0}$ and $n+1 \in S_{i_0}$, and f(n) = n-2, if $n \in S_{i_0}$ and $n+1 \notin S_{i_0}$. The function f is a bijection cyclically permutes the elements of S_{i_0} , and leaves all the other elements of X fixed. Let f(A) be the k-element subset of X obtained by applying f to every element in A. Then [A], [f(A)], and [f(f(A))] are distinct remainders, and f(f(f(A))) = A. We deduce that the function f gives a 1-1 correspondence between those k-element subsets A of X with [A] = 0 (when Peter wins), those with [A] = 1 (when Paul wins), and those with [A] = 2 (when Mary wins). The game is therefore fair.

Now suppose that k = 3m is a multiple of 3. Then the k-element subsets A such that $A \cap S_i$ has 1 or 2 elements for some *i* can be partitioned into triples using the same function *f* as above. When A is chosen at random among these subsets, the result is an equal number of winning games for each of the three players. There remain those k-element subsets A which are unions of *m* 3-element subsets S_i . Since all such subsets satisfy [A] = 0, Peter will win if A is chosen among those subsets. We deduce that the game is biased towards a win for Peter.