THE $36^{\text {th }}$ ANNUAL (2014) UNIVERSITY OF MARYLAND
 HIGH SCHOOL MATHEMATICS COMPETITION

PART II SOLUTIONS

1. (a) The prime number 7 can only appear in one row of the array, and the product of the numbers in that row will be a multiple of 7 . Since the product of the three numbers in each of the other two rows will not be a multiple of 7 , the numbers $1,2,3, \ldots, 9$ cannot be used to form a multimagic square.
(b) Any 3×3 magic square M gives rise to a multimagic square by replacing each entry x in M with

2^{x}. For example, the magic square | 4 | 9 | 2 |
| :---: | :---: | :---: |
| 3 | 5 | 7 |
| 8 | 1 | 6 | gives rise to the multimagic square | 2^{4} | 2^{9} | 2^{2} |
| :--- | :--- | :--- | :--- |
| 2^{3} | 2^{5} | 2^{7} |
| 2^{8} | 2^{1} | 2^{6} | .

2. Let $n_{k}:=(2014!) / k$ for $1 \leq k \leq 2014$. Then the difference

$$
\frac{1}{n_{k+1}}-\frac{1}{n_{k}}=\frac{k+1}{2014!}-\frac{k}{2014!}=\frac{1}{2014!}
$$

for $1 \leq k \leq 2013$, and therefore is independent of k. It follows that $\frac{1}{n_{1}}, \frac{1}{n_{2}}, \ldots, \frac{1}{n_{2014}}$ is an arithmetic progression.
3. Write $x=n+\epsilon$ where n is an integer and $0 \leq \epsilon<1$. Then we seek the pairs (n, ϵ) such that $(n+\epsilon)^{2}-25 n+100=0$, or equivalently,

$$
\begin{equation*}
\epsilon^{2}+2 n \epsilon+\left(n^{2}-25 n+100\right)=0 \tag{1}
\end{equation*}
$$

Solving the quadratic equation (1) for $\epsilon \geq 0$ gives $\epsilon=-n+5 \sqrt{n-4}$. The pair (n, ϵ) will give a solution x to the original equation if and only if

$$
\begin{equation*}
0 \leq-n+5 \sqrt{n-4}<1 \tag{2}
\end{equation*}
$$

We have

$$
0 \leq-n+5 \sqrt{n-4} \Leftrightarrow n^{2}-25 n+100 \leq 0 \Leftrightarrow(n-5)(n-20) \leq 0,
$$

which gives $5 \leq n \leq 20$. The inequality $-n+5 \sqrt{n-4}<1$ is equivalent to $25(n-4)<(1+n)^{2}$, or $n^{2}-23 n+101 \geq 0$. The roots of the quadratic equation $y^{2}-23 y+101=0$ are $(23 \pm 5 \sqrt{5}) / 2$, which are approximately 5.9 and 17.1. It follows that n lies outside the interval [5.9,17.1]. Since we also know that $n \in[5,20]$, we conclude that the only integers n for which (2) holds are $n=5$ and $n=18,19$, and 20. As $x^{2}=\sqrt{25 n-100}$, we correspondingly obtain the four solutions of the original equation: $x=5, x=\sqrt{350}, x=\sqrt{375}$, and $x=20$.
4. Split the carts into four groups of two carts each: C_{1}, C_{2}, C_{3}, and C_{4}. Assume without loss of generality that the desert is four miles across. For $1 \leq k \leq 4$, the carts in group C_{k} carry 2 cannons k miles ahead across the desert, leave them there, move backwards 1 mile, pick up the two cannons which they find there, and carry them forwards $5-k$ miles to the end of the desert. This accomplishes the task in one and a half days.
We next prove that one and a half days is the minimum possible amount of time required. Suppose that the 8 carts move the 10 cannons across the desert in t days. For each i with $1 \leq i \leq 8$, let t_{i} be the time cart i was moving a cannon forward during the process, and $t_{i}^{\prime}:=t-t_{i}$ be the time when it was either standing still or moving backwards. Since there are 2 more cannons than carts, we must
have at least 2 days worth of cart time going backwards to retrieve them, which gives the inequality $\sum_{i=1}^{8} t_{i}^{\prime} \geq 2$. It follows that

$$
\begin{equation*}
8 t=\sum_{i=1}^{8}\left(t_{i}+t_{i}^{\prime}\right)=\sum_{i=1}^{8} t_{i}+\sum_{i=1}^{8} t_{i}^{\prime} \geq 10+2=12 \tag{3}
\end{equation*}
$$

which implies that $t \geq \frac{3}{2}$, as required.
5. Let us consider the general case where the polygon C has n sides and $n(n-3) / 2$ diagonals. Suppose that the vertices of C are $A_{0}, A_{1}, \ldots, A_{n-1}$, in clockwise order. If $A_{r} A_{s}$ is any diagonal of C, then $A_{r} A_{s}$ intersects $A_{r+1} A_{s+1}$ at a point M in the interior of C (here, we take the indices modulo n, that is, we subtract n if necessary to get integers in $[0, n-1]$). The triangle inequality in the triangles $A_{r} M A_{r+1}$ and $A_{s} M A_{s+1}$ gives $\left|M A_{r}\right|+\left|M A_{r+1}\right|>\left|A_{r} A_{r+1}\right|$ and $\left|M A_{s}\right|+\left|M A_{s+1}\right|>\left|A_{s} A_{s+1}\right|$. Adding these two inequalities together gives

$$
\begin{equation*}
\left|A_{r} A_{s}\right|+\left|A_{r+1} A_{s+1}\right|>\left|A_{r} A_{r+1}\right|+\left|A_{s} A_{s+1}\right| \tag{4}
\end{equation*}
$$

Now consider the sum of the inequalities (4) over all diagonals $A_{r} A_{s}$ of C. Each diagonal of C will occur twice on the left hand side of this sum. Since each vertex A_{r} is an endpoint of $n-3$ diagonals, each side of C will appear $n-3$ times on the right hand side. We conclude that $2 d>(n-3) p$, or $\frac{d}{p}>\frac{n-3}{2}$. Applying this with $n=4031$ gives $\frac{d}{p}>\frac{4028}{2}=2014$.

