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1. (a) One possible such sequence is H T H T H T H T H 7→ H H T T H T H T H 7→ H H H H H T H
T H 7→ H H H H H H T T H 7→ H H H H H H H H H.

(b) After any legal move, the total number of T’s in the configuration is either decreased by 2,
increased by 2, or remains unchanged. Since there are 4 T’s in the initial configuration, we deduce
that after any sequence of legal moves the total number of T’s in the resulting configuration will be
even. But there are 9 T’s in T T T T T T T T T; hence this configuration cannot be achieved.

2. We observe by inspection that k = 2015 is a solution to the equation. Also, the equation is linear in
k, i.e., it may be written in the form ak = b, where
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Since a 6= 0, we deduce that the equation ak = b has a unique solution k = b/a, and therefore that
the answer k = 2015 is the only one.

3. Let xi be the number written on the i-th ticket for 1 ≤ i ≤ 2015. It suffices to show that x1 = x2, for
then by reordering the tickets and using the same argument we can prove that xi = xj for all i and
j. Consider the partial sums si := x1 + · · · + xi, and let ri be the remainder when si is divided by
2016. The assumptions give ri 6= 0 for all i ∈ [1, 2015]. If ri = rj for some i < j, then 2016 divides
sj − si = xi+1 + · · · + xj , which is not allowed. Therefore the remainders r1 = x1, r2, . . . , r2015 are
equal to some permutation of the numbers 1, . . . , 2015.

By switching the first two tickets, we form a new sequence x2, x1, x3, . . . , x2015 with partial sums
s′1 = x2 and s′i = si for all i ≥ 2. The remainders of the s′i when divided by 2016 are r′1 =
x2, r

′

2 = r2, . . . , r
′

2015 = r2015, and these also must form a permutation of the numbers 1, . . . , 2015. By
comparing with the previous sequence of remainders, we deduce that x1 = x2, as required. Therefore,
the same number is written on all of the tickets.

4. (a) We will recursively construct a sequence of distance-distinct sets A1, A2, . . . contained in B such
that A1 ⊂ A2 ⊂ · · · and Ai consists of i points for every i ≥ 1. Let A1 be any point of B. Assume by
induction on n that a distance-distinct set An ⊂ B with n points has been constructed, and let Dn

be the finite set of distances between any two points of An. Let M ′ be the set of midpoints of the
line segments which connect any two points of An, and let M ′′ be the set of all points on the real line
whose distance from some point P ∈ An lies in Dn. Then both M ′ and M ′′ are finite sets. Choose
a point Q in B that does not belong to the set An ∪M ′ ∪M ′′. Then the construction ensures that
An+1 := An ∪ {Q} is distance distinct.

Define A to the be the union of the sets An for all n ≥ 1. Then A is an infinite subset of B which is
distance distinct. Indeed, if P1, P2, P3, and P4 are any four points in A, then there exists an index n
such that all four points are in An. Since An is distance distinct, we conclude that |P1P2| 6= |P3P4|.

(b) If there is some line L in the plane which contains infinitely many points of B, then by part (a)
there is an infinite distance-distinct subset of B ∩ L. A similar argument also implies that if there
is some circle C in the plane which contains infinitely many points of B, then there is an infinite
distance-distinct subset of B ∩ C (the only change to the proof in (a) is that M ′ should be replaced
with the set of midpoints of all arcs of C which connect any two points of An). We may therefore
assume that the intersection of B with any line and any circle is finite.



We can now work similarly to part (a), to construct a sequence of distance-distinct sets A1, A2, . . .
contained in B such that A1 ⊂ A2 ⊂ · · · and Ai consists of i points for each i. Let A1 be any point of
B. Assume inductively that a distance-distinct set An ⊂ B with n points has been constructed, and
let Dn be the finite set of distances between any two points of An. Let M

′ be the set of perpendicular
bisectors of all line segments which connect two points of An, and let M ′′ be the set of all circles
whose centers lie in An and radii lie in Dn. Then both B ∩M ′ and B ∩M ′′ are finite sets. Since B is
infinite, there is a point Q in B that does not belong to the set An ∪M ∪M ′. Then the construction
ensures that An+1 := An ∪ {Q} is distance distinct. Finally, let A be the union of the sets An for all
n ≥ 1. As in part (a), A is a solution to the problem.

5. First Solution: Let C be a circle with center O and radius R, and let P be any point inside C. If
AB is a chord of C passing through P , then the quantity d(P ) := |PA| · |PB| is called the power
of the point P with respect to C, and is independent of the chord AB chosen. Moreover, we have
d(P ) = R2 − |OP |2, as is easily seen by choosing AB to be a diameter of the circle.

Let C1 be the circumcircle of triangle ABC, with center O1. By our assumption, the points E, F ,
and G have the same power with respect to C1, and therefore satisfy |EO1| = |FO1| = |GO1|. If O is
the center of the circumsphere of ABCD, then O lies on the line through O1 which is perpendicular
to the plane ABC. It follows that the right triangles EOO1, FOO1, and GOO1 are equal, and
hence that |EO| = |FO| = |GO|. By considering triangles ABD and BCD, we similarly prove that
|EO| = |HO| = |IO| and |FO| = |HO| = |JO|. We conclude that the six points E, F , G, H, I, and
J are equidistant from O, and thus lie on a sphere with center at O.

Second Solution: Let S be a sphere with center O and radius R, and let P be any point inside S. If
AB is a chord of S passing through P , we claim that the quantity d(P ) := |PA| · |PB| is independent
of the chord AB chosen, and is equal to R2 − |OP |2. Indeed, the point O and the chord AB lie on
a plane which intersects S in a great circle C, and d(P ) is equal to the power of the point P with
respect to C. This implies that d(P ) = R2−|OP |2 and hence is independent of the chord AB chosen.
The quantity d(P ) is called the power of P with respect to the sphere S.

In the case of the problem at hand, the assumption implies that the six points E, F , G, H, I, and
J have the same power with respect to the circumsphere S of ABCD (the unique sphere that passes
through the 4 points A, B, C, and D). It follows that E, F , G, H, I, and J are equidistant from the
center O of S, and therefore lie on a smaller sphere with the same center O.


