THE $37^{\text {th }}$ ANNUAL (2015) UNIVERSITY OF MARYLAND HIGH SCHOOL MATHEMATICS COMPETITION

PART II SOLUTIONS

1. (a) One possible such sequence is H T H T H T H T H \mapsto H H T T H T H T H \mapsto H H H H H T H TH $\mapsto \mathrm{HHHHHHTTH}$ H H H H H H H H H H.
(b) After any legal move, the total number of T's in the configuration is either decreased by 2, increased by 2 , or remains unchanged. Since there are 4 T's in the initial configuration, we deduce that after any sequence of legal moves the total number of T's in the resulting configuration will be even. But there are 9 T's in T T T T T T T T T; hence this configuration cannot be achieved.
2. We observe by inspection that $k=2015$ is a solution to the equation. Also, the equation is linear in k, i.e., it may be written in the form $a k=b$, where

$$
a=\left(\frac{1}{15}+\frac{1}{12}+\frac{1}{9}+\frac{1}{6}+\frac{1}{3}\right)-\left(\frac{1}{2000}+\frac{1}{2003}+\frac{1}{2006}+\frac{1}{2009}+\frac{1}{2012}\right)>\frac{1}{3}-\frac{5}{2000}>0 .
$$

Since $a \neq 0$, we deduce that the equation $a k=b$ has a unique solution $k=b / a$, and therefore that the answer $k=2015$ is the only one.
3. Let x_{i} be the number written on the i-th ticket for $1 \leq i \leq 2015$. It suffices to show that $x_{1}=x_{2}$, for then by reordering the tickets and using the same argument we can prove that $x_{i}=x_{j}$ for all i and j. Consider the partial sums $s_{i}:=x_{1}+\cdots+x_{i}$, and let r_{i} be the remainder when s_{i} is divided by 2016. The assumptions give $r_{i} \neq 0$ for all $i \in[1,2015]$. If $r_{i}=r_{j}$ for some $i<j$, then 2016 divides $s_{j}-s_{i}=x_{i+1}+\cdots+x_{j}$, which is not allowed. Therefore the remainders $r_{1}=x_{1}, r_{2}, \ldots, r_{2015}$ are equal to some permutation of the numbers $1, \ldots, 2015$.
By switching the first two tickets, we form a new sequence $x_{2}, x_{1}, x_{3}, \ldots, x_{2015}$ with partial sums $s_{1}^{\prime}=x_{2}$ and $s_{i}^{\prime}=s_{i}$ for all $i \geq 2$. The remainders of the s_{i}^{\prime} when divided by 2016 are $r_{1}^{\prime}=$ $x_{2}, r_{2}^{\prime}=r_{2}, \ldots, r_{2015}^{\prime}=r_{2015}$, and these also must form a permutation of the numbers $1, \ldots, 2015$. By comparing with the previous sequence of remainders, we deduce that $x_{1}=x_{2}$, as required. Therefore, the same number is written on all of the tickets.
4. (a) We will recursively construct a sequence of distance-distinct sets A_{1}, A_{2}, \ldots contained in B such that $A_{1} \subset A_{2} \subset \cdots$ and A_{i} consists of i points for every $i \geq 1$. Let A_{1} be any point of B. Assume by induction on n that a distance-distinct set $A_{n} \subset B$ with n points has been constructed, and let D_{n} be the finite set of distances between any two points of A_{n}. Let M^{\prime} be the set of midpoints of the line segments which connect any two points of A_{n}, and let $M^{\prime \prime}$ be the set of all points on the real line whose distance from some point $P \in A_{n}$ lies in D_{n}. Then both M^{\prime} and $M^{\prime \prime}$ are finite sets. Choose a point Q in B that does not belong to the set $A_{n} \cup M^{\prime} \cup M^{\prime \prime}$. Then the construction ensures that $A_{n+1}:=A_{n} \cup\{Q\}$ is distance distinct.
Define A to the be the union of the sets A_{n} for all $n \geq 1$. Then A is an infinite subset of B which is distance distinct. Indeed, if P_{1}, P_{2}, P_{3}, and P_{4} are any four points in A, then there exists an index n such that all four points are in A_{n}. Since A_{n} is distance distinct, we conclude that $\left|P_{1} P_{2}\right| \neq\left|P_{3} P_{4}\right|$.
(b) If there is some line L in the plane which contains infinitely many points of B, then by part (a) there is an infinite distance-distinct subset of $B \cap L$. A similar argument also implies that if there is some circle C in the plane which contains infinitely many points of B, then there is an infinite distance-distinct subset of $B \cap C$ (the only change to the proof in (a) is that M^{\prime} should be replaced with the set of midpoints of all arcs of C which connect any two points of A_{n}). We may therefore assume that the intersection of B with any line and any circle is finite.

We can now work similarly to part (a), to construct a sequence of distance-distinct sets A_{1}, A_{2}, \ldots contained in B such that $A_{1} \subset A_{2} \subset \cdots$ and A_{i} consists of i points for each i. Let A_{1} be any point of B. Assume inductively that a distance-distinct set $A_{n} \subset B$ with n points has been constructed, and let D_{n} be the finite set of distances between any two points of A_{n}. Let M^{\prime} be the set of perpendicular bisectors of all line segments which connect two points of A_{n}, and let $M^{\prime \prime}$ be the set of all circles whose centers lie in A_{n} and radii lie in D_{n}. Then both $B \cap M^{\prime}$ and $B \cap M^{\prime \prime}$ are finite sets. Since B is infinite, there is a point Q in B that does not belong to the set $A_{n} \cup M \cup M^{\prime}$. Then the construction ensures that $A_{n+1}:=A_{n} \cup\{Q\}$ is distance distinct. Finally, let A be the union of the sets A_{n} for all $n \geq 1$. As in part (a), A is a solution to the problem.
5. First Solution: Let \mathcal{C} be a circle with center O and radius R, and let P be any point inside \mathcal{C}. If $A B$ is a chord of \mathcal{C} passing through P, then the quantity $d(P):=|P A| \cdot|P B|$ is called the power of the point P with respect to \mathcal{C}, and is independent of the chord $A B$ chosen. Moreover, we have $d(P)=R^{2}-|O P|^{2}$, as is easily seen by choosing $A B$ to be a diameter of the circle.
Let \mathcal{C}_{1} be the circumcircle of triangle $A B C$, with center O_{1}. By our assumption, the points E, F, and G have the same power with respect to \mathcal{C}_{1}, and therefore satisfy $\left|E O_{1}\right|=\left|F O_{1}\right|=\left|G O_{1}\right|$. If O is the center of the circumsphere of $A B C D$, then O lies on the line through O_{1} which is perpendicular to the plane $A B C$. It follows that the right triangles $E O O_{1}, F O O_{1}$, and $G O O_{1}$ are equal, and hence that $|E O|=|F O|=|G O|$. By considering triangles $A B D$ and $B C D$, we similarly prove that $|E O|=|H O|=|I O|$ and $|F O|=|H O|=|J O|$. We conclude that the six points E, F, G, H, I, and J are equidistant from O, and thus lie on a sphere with center at O.

Second Solution: Let \mathcal{S} be a sphere with center O and radius R, and let P be any point inside \mathcal{S}. If $A B$ is a chord of \mathcal{S} passing through P, we claim that the quantity $d(P):=|P A| \cdot|P B|$ is independent of the chord $A B$ chosen, and is equal to $R^{2}-|O P|^{2}$. Indeed, the point O and the chord $A B$ lie on a plane which intersects \mathcal{S} in a great circle \mathcal{C}, and $d(P)$ is equal to the power of the point P with respect to \mathcal{C}. This implies that $d(P)=R^{2}-|O P|^{2}$ and hence is independent of the chord $A B$ chosen. The quantity $d(P)$ is called the power of P with respect to the sphere \mathcal{S}.

In the case of the problem at hand, the assumption implies that the six points E, F, G, H, I, and J have the same power with respect to the circumsphere \mathcal{S} of $A B C D$ (the unique sphere that passes through the 4 points A, B, C, and $D)$. It follows that E, F, G, H, I, and J are equidistant from the center O of \mathcal{S}, and therefore lie on a smaller sphere with the same center O.

