THE 37th ANNUAL (2015) UNIVERSITY OF MARYLAND HIGH SCHOOL MATHEMATICS COMPETITION PART II SOLUTIONS

(b) After any legal move, the total number of T's in the configuration is either decreased by 2, increased by 2, or remains unchanged. Since there are 4 T's in the initial configuration, we deduce that after any sequence of legal moves the total number of T's in the resulting configuration will be even. But there are 9 T's in T T T T T T T T T T; hence this configuration cannot be achieved.

2. We observe by inspection that k = 2015 is a solution to the equation. Also, the equation is linear in k, i.e., it may be written in the form ak = b, where

$$a = \left(\frac{1}{15} + \frac{1}{12} + \frac{1}{9} + \frac{1}{6} + \frac{1}{3}\right) - \left(\frac{1}{2000} + \frac{1}{2003} + \frac{1}{2006} + \frac{1}{2009} + \frac{1}{2012}\right) > \frac{1}{3} - \frac{5}{2000} > 0.$$

Since $a \neq 0$, we deduce that the equation ak = b has a unique solution k = b/a, and therefore that the answer k = 2015 is the only one.

3. Let x_i be the number written on the *i*-th ticket for $1 \le i \le 2015$. It suffices to show that $x_1 = x_2$, for then by reordering the tickets and using the same argument we can prove that $x_i = x_j$ for all *i* and *j*. Consider the partial sums $s_i := x_1 + \cdots + x_i$, and let r_i be the remainder when s_i is divided by 2016. The assumptions give $r_i \ne 0$ for all $i \in [1, 2015]$. If $r_i = r_j$ for some i < j, then 2016 divides $s_j - s_i = x_{i+1} + \cdots + x_j$, which is not allowed. Therefore the remainders $r_1 = x_1, r_2, \ldots, r_{2015}$ are equal to some permutation of the numbers $1, \ldots, 2015$.

By switching the first two tickets, we form a new sequence $x_2, x_1, x_3, \ldots, x_{2015}$ with partial sums $s'_1 = x_2$ and $s'_i = s_i$ for all $i \ge 2$. The remainders of the s'_i when divided by 2016 are $r'_1 = x_2, r'_2 = r_2, \ldots, r'_{2015} = r_{2015}$, and these also must form a permutation of the numbers $1, \ldots, 2015$. By comparing with the previous sequence of remainders, we deduce that $x_1 = x_2$, as required. Therefore, the same number is written on all of the tickets.

4. (a) We will recursively construct a sequence of distance-distinct sets A_1, A_2, \ldots contained in B such that $A_1 \subset A_2 \subset \cdots$ and A_i consists of i points for every $i \geq 1$. Let A_1 be any point of B. Assume by induction on n that a distance-distinct set $A_n \subset B$ with n points has been constructed, and let D_n be the finite set of distances between any two points of A_n . Let M' be the set of midpoints of the line segments which connect any two points of A_n , and let M'' be the set of all points on the real line whose distance from some point $P \in A_n$ lies in D_n . Then both M' and M'' are finite sets. Choose a point Q in B that does not belong to the set $A_n \cup M' \cup M''$. Then the construction ensures that $A_{n+1} := A_n \cup \{Q\}$ is distance distinct.

Define A to the be the union of the sets A_n for all $n \ge 1$. Then A is an infinite subset of B which is distance distinct. Indeed, if P_1 , P_2 , P_3 , and P_4 are any four points in A, then there exists an index n such that all four points are in A_n . Since A_n is distance distinct, we conclude that $|P_1P_2| \neq |P_3P_4|$.

(b) If there is some line L in the plane which contains infinitely many points of B, then by part (a) there is an infinite distance-distinct subset of $B \cap L$. A similar argument also implies that if there is some circle C in the plane which contains infinitely many points of B, then there is an infinite distance-distinct subset of $B \cap C$ (the only change to the proof in (a) is that M' should be replaced with the set of midpoints of all arcs of C which connect any two points of A_n). We may therefore assume that the intersection of B with any line and any circle is finite.

We can now work similarly to part (a), to construct a sequence of distance-distinct sets A_1, A_2, \ldots contained in B such that $A_1 \subset A_2 \subset \cdots$ and A_i consists of i points for each i. Let A_1 be any point of B. Assume inductively that a distance-distinct set $A_n \subset B$ with n points has been constructed, and let D_n be the finite set of distances between any two points of A_n . Let M' be the set of perpendicular bisectors of all line segments which connect two points of A_n , and let M'' be the set of all circles whose centers lie in A_n and radii lie in D_n . Then both $B \cap M'$ and $B \cap M''$ are finite sets. Since B is infinite, there is a point Q in B that does not belong to the set $A_n \cup M \cup M'$. Then the construction ensures that $A_{n+1} := A_n \cup \{Q\}$ is distance distinct. Finally, let A be the union of the sets A_n for all $n \ge 1$. As in part (a), A is a solution to the problem.

5. First Solution: Let C be a circle with center O and radius R, and let P be any point inside C. If AB is a chord of C passing through P, then the quantity $d(P) := |PA| \cdot |PB|$ is called the power of the point P with respect to C, and is independent of the chord AB chosen. Moreover, we have $d(P) = R^2 - |OP|^2$, as is easily seen by choosing AB to be a diameter of the circle.

Let C_1 be the circumcircle of triangle ABC, with center O_1 . By our assumption, the points E, F, and G have the same power with respect to C_1 , and therefore satisfy $|EO_1| = |FO_1| = |GO_1|$. If O is the center of the circumsphere of ABCD, then O lies on the line through O_1 which is perpendicular to the plane ABC. It follows that the right triangles EOO_1 , FOO_1 , and GOO_1 are equal, and hence that |EO| = |FO| = |GO| = |GO|. By considering triangles ABD and BCD, we similarly prove that |EO| = |HO| = |IO| and |FO| = |HO| = |JO|. We conclude that the six points E, F, G, H, I, and J are equidistant from O, and thus lie on a sphere with center at O.

Second Solution: Let S be a sphere with center O and radius R, and let P be any point inside S. If AB is a chord of S passing through P, we claim that the quantity $d(P) := |PA| \cdot |PB|$ is independent of the chord AB chosen, and is equal to $R^2 - |OP|^2$. Indeed, the point O and the chord AB lie on a plane which intersects S in a great circle C, and d(P) is equal to the power of the point P with respect to C. This implies that $d(P) = R^2 - |OP|^2$ and hence is independent of the chord AB chosen. The quantity d(P) is called the power of P with respect to the sphere S.

In the case of the problem at hand, the assumption implies that the six points E, F, G, H, I, and J have the same power with respect to the circumsphere S of ABCD (the unique sphere that passes through the 4 points A, B, C, and D). It follows that E, F, G, H, I, and J are equidistant from the center O of S, and therefore lie on a smaller sphere with the same center O.