THE $38^{\text {th }}$ ANNUAL (2016) UNIVERSITY OF MARYLAND HIGH SCHOOL MATHEMATICS COMPETITION

PART II SOLUTIONS

1. The only such table is

2	1	5	7	70
1	3	7	7	147
8	8	8	1	512
9	9	1	9	729
144	216	280	441	

2. Suppose X is a pdf. Note that if $x \in X$, then $x+2, x+3, x+5, x+7 \notin X$. Also, from $x+1, x+4$ and $x+6$ at most one can be in X. Thus, among every eight consecutive integers at most 2 may be in X. This implies X has at most $\frac{2016}{4}=504$ elements.

The set $X=\{4 k \mid 1 \leq k \leq 504\}$ is a pdf, because if $x, y \in X$, then $|x-y|$ is a multiple of 4 . Therefore $|x-y|$ is not prime.

The answer is 504 .
3. For $i \in\{1,2, \ldots, 14\}$, let M_{i} denote the midpoint of the line segment $X_{i} X_{i+1}$. Suppose, for the sake of contradiction, that each of these points is within distance $1 / 2$ from the origin. Then, by the triangle inequality the distance between any two points M_{i} and M_{j} is no more than 1 for all i, j.
Note that $M_{1} X_{2}=X_{1} X_{2} / 2, M_{2} X_{2}=X_{3} X_{2} / 2$, and $\angle M_{1} X_{2} M_{2}=\angle X_{1} X_{2} X_{3}$, and thus $\triangle X_{1} X_{2} X_{3}$ is similar to $\triangle M_{1} X_{2} M_{2}$ and $M_{1} M_{2}=X_{1} X_{3} / 2$. We have $X_{1} X_{3}=2 M_{1} M_{2} \leq 2 \times 1=2$. Repeating this reasoning, we find that the distances $X_{2 k-1} X_{2 k+1}$ are all no more than 2 , for $k \in\{1,2, \ldots, 7\}$. By the triangle inequality, the distance from X_{1} to X_{15} is less than or equal to $7 \cdot 2=14$. But it was assumed that $X_{1}=(10,0)$ and $X_{15}=(0,10)$, and so the distance $X_{1} X_{15}$ is actually $\sqrt{10^{2}+10^{2}}=10 \sqrt{2}$. Since $14^{2}=196<200=(10 \sqrt{2})^{2}$, we find that the distance $X_{1} X_{15}$ exceeds 14 , which is a contradiction. This completes the proof.
4. For every $k \in\{1,2, \ldots, 82\}$, there is an associated three-letter sequence $\left(s_{k}, s_{k+1}, s_{k+2}\right)$. There are 27 distinct three-letter sequences that can be constructed from $\{A, B, C\}$. Since $82=27 \cdot 3+1$, the pigeonhole principle implies that some three-letter sequence (r, s, t) must appear more than 3 times as a consecutive subsequence of $\left(s_{1}, \ldots, s_{84}\right)$. One such occurrence must be at the end of $\left(s_{1}, s_{2}, \ldots, s_{84}\right)$, since otherwise one of the three sequences $(r, s, t, A),(r, s, t, B),(r, s, t, C)$ would have to appear more than once as a consecutive subsequence of $\left(s_{1}, s_{2}, \ldots, s_{84}\right)$. Similarly, one such occurrence must be at the beginning of $\left(s_{1}, s_{2}, \ldots, s_{84}\right)$, since otherwise one of the sequences $(A, r, s, t),(B, r, s, t),(C, r, s, t)$ would have to appear appear more than once as a consecutive subsequence of $\left(s_{1}, s_{2}, \ldots, s_{84}\right)$. Therefore, $\left(s_{82}, s_{83}, s_{84}\right)=(r, s, t)=\left(s_{1}, s_{2}, s_{3}\right)=(A, B, B)$. The correct answer is B.

Remark. Although it was not required for credit, here is an example of a sequence ($s_{1}, s_{2}, \ldots, s_{84}$) satisfying the conditions of the problem. (This example comes from the multiplicative structure of the finite field of order 81.)

$$
\begin{aligned}
& (A, B, B, C, A, B, C, B, A, C, C, A, B, A, B, A, A, A, A, C, C, C, B, A, A, C, A, C \text {, } \\
& B, B, B, C, B, B, C, C, B, C, A, C, C, B, B, A, C, B, A, B, C, A, A, C, B, C, B, C, \\
& C, C, C, A, A, A, B, C, C, A, C, A, B, B, B, B, A, B, B, A, A, B, A, C, A, A, B, B)
\end{aligned}
$$

5. We claim that there is no such sequence. On the contrary assume a_{n} is such a sequence. For any positive integer n, we use the AM-GM inequality to obtain

$$
\left(\sum_{k=n+1}^{2 n} a_{k}\right)\left(\sum_{k=n+1}^{2 n} \frac{1}{a_{k}}\right) \geq n\left(\prod_{k=n+1}^{2 n} a_{k}\right)^{1 / n} \cdot n\left(\prod_{k=n+1}^{2 n} \frac{1}{a_{k}}\right)^{1 / n}=n^{2}
$$

On the other hand,

$$
\sum_{k=n+1}^{2 n} a_{k} \leq \sum_{k=1}^{2 n} a_{k} \leq(2 n)^{2}=4 n^{2}
$$

Combining these two inequalities we obtain

$$
\sum_{k=n+1}^{2 n} \frac{1}{a_{k}} \geq \frac{1}{4}
$$

Adding up this inequality for $n=2,4,8, \ldots, 2^{m}$, we obtain

$$
\sum_{k=1}^{2^{m+1}} \frac{1}{a_{k}} \geq \frac{m}{4}
$$

This is larger than 2016 when $m>4 \cdot 2016$, which is a contradiction.

