PART II
November 28, 2018, 1:00-3:00

NO CALCULATORS
 2 hours

1. I have 6 envelopes full of money. The amounts (in dollars) in the 6 envelopes are six consecutive integers. I give you one of the envelopes. The total amount in the remaining 5 envelopes is $\$ 2018$. How much money did I give you?
2. Two tangents $A B$ and $A C$ are drawn to a circle from an exterior point A. Let D and E be the midpoints of the line segments $A B$ and $A C$. Prove that the line $D E$ does not intersect the circle.
3. Let $n \geq 2$ be an integer. A subset S of $\{0,1, \ldots, n-2\}$ is said to be closed whenever it satisfies all of the following properties:

- $0 \in S$
- If $x \in S$ then $n-2-x \in S$
- If $x \in S, y \geq 0$, and $y+1$ divides $x+1$ then $y \in S$.

Prove that $\{0,1, \ldots, n-2\}$ is the only closed subset if and only if n is prime.
(Note: " \in " means "belongs to".)
4. Consider the 3×3 grid shown below:

A	B	C
D	E	F
G	H	I

A knight move is a pair of elements (s, t) from $\{A, B, C, D, E, F, G, H, I\}$ such that s can be reached from t by moving either two spaces horizontally and one space vertically, or by moving one space horizontally and two spaces vertically. (For example, (B, I) is a knight move, but (G, E) is not.) A $k n i g h t$ path of length n is a sequence $s_{0}, s_{1}, s_{2}, \ldots, s_{n}$ drawn from the set $\{A, B, C, D, E, F, G, H, I\}$ (with repetitions allowed) such that each pair $\left(s_{i}, s_{i+1}\right)$ is a knight move.

Let N be the total number of knight paths of length 2018 that begin at A and end at A. Let M be the total number of knight paths of length 2018 that begin at A and end at I. Compute the value ($N-M$), with proof. (Your answer must be in simplified form and may not involve any summations.)
5. A strip is defined to be the region of the plane lying on or between two parallel lines. The width of the strip is the distance between the two lines. Consider a finite number of strips whose widths sum to a number $d<1$, and let D be a circular closed disk of diameter 1. Prove or disprove: no matter how the strips are placed in the plane, they cannot entirely cover the disk D.

