THE 40th ANNUAL (2018) UNIVERSITY OF MARYLAND HIGH SCHOOL MATHEMATICS COMPETITION PART II SOLUTIONS

- 1. Suppose the contents of the envelopes in dollars are $x, x + 1, \ldots, x + 5$. The total money in the envelopes, thus, is 6x + 15. The total amount in the remaining envelopes is between $x + x + 1 + \ldots + x + 4 = 5x + 10$ and $x + 1 + \ldots + x + 5 = 5x + 15$. Thus, $5x + 10 \le 2018 \le 5x + 15$, which implies $x + 2 \le 2018/5 \le x + 3$. This shows x = 401. Since $2018 = 5 \times 401 + 13$, the last envelope contains x + 2 = 403 dollars. The answer is 403.
- 2. Let O be the center of the circle. Note that A and O are both on the perpendicular bisector of BC. Thus $AO \perp BC$. Since DE and BC are parallel and $AO \perp BC$, we have $AO \perp DE$.

Let r be the radius of the circle and M be the point of intersection of DE and AO. We need to show |MO| > r. Since triangles AOB and ADM are similar, we have

$$\frac{|AO|}{|AD|} = \frac{|AB|}{|AM|}$$

Since |AD| = |AB|/2, we have

$$|AM| = \frac{|AB|^2}{2|AO|} = \frac{|AO|^2 - r^2}{2|AO|}$$

This shows $|MO| = |AO| - |AM| = \frac{|AO|^2 + r^2}{2|AO|}$. To show |MO| > r, it is enough to show $|AO|^2 + r^2 > 2r|AO|$, which is equivalent to $(|AO| - r)^2 > 0$. This holds since |AO| > r.

- 3. Let $T = \{x + 1 \mid x \in S\} \subseteq \{1, \dots, n 1\}$. By assumption, S is closed if and only if T satisfies the following
 - (a) $1 \in T$.
 - (b) If $x \in T$, then $n x \in T$.
 - (c) If $x \in T$, $y \ge 1$ and y divides x, then $y \in T$.

Suppose n is prime and S is closed. We will show $T = \{1, ..., n-1\}$. On the contrary assume k is the smallest positive integer less than or equal to n-1 that is not in T. Note that $k \ge 2$ and thus k does not divide n. By division algorithm, there are integers q and r for which n = kq + r and 0 < r < k. By the choice of k, we have $r \in T$ and thus by (b), $n - r \in T$. This implies $kq \in T$. By (c), $k \in T$, which is a contradiction. This shows $T = \{1, ..., n-1\}$.

Now assume n is composite and let T be the set of all positive integers less than or equal to n-1 that are relatively prime to n. Clearly (a) is satisfied. If $x \in T$, then n-x is also relatively prime to n and thus $n-x \in T$, which shows (b) is satisfied. If x is relatively prime to n, then every divisor of x is also relatively prime to n, which shows (c) is satisfied. Also, if 1 < r < n is a divisor of n, then $r \notin T$, which means $T \neq \{1, \ldots, n-1\}$. This completes the proof.

4. For any n, let a_n, c_n , and i_n denote the total number of knight paths of length n which begin at A and end at A, C, and I, respectively. We are trying to find $a_{2018} - i_{2018}$.

First we evaluate a_2 and i_2 . There are two knight paths from A to A (specifically, AHA and AFA), one path from A to C (AHC), one path from A to G (AFG) and no paths from A to I. Thus $a_2 = 2$ and $i_2 = 0$.

Since there are 2 knight paths of length 2 from A to A and one each from C to A and G to A, we have $a_{n+2} = 2a_n + c_n + c_n = 2a_n + 2c_n$

By similar reasoning, $i_{n+2} = 2i_n + c_n + c_n = 2i_n + 2c_n$.

Subtracting these two equations we obtain $a_{n+2} - i_{n+2} = 2(a_n - i_n)$. Therefore, $a_{2018} - i_{2018} = 2^{1008}(a_2 - i_2) = 2^{1009}$.

5. We claim this is impossible. Suppose on the contrary n strips of widths d_1, \ldots, d_n cover a unit disk D. Let S be the sphere whose great circle is the boundary of D. For each strip draw two planes perpendicular to the plane containing D through parallel lines that bound that strip. Let R_1, \ldots, R_n be the regions that are created by these planes on the sphere S. Note that by assumption the sum of areas of R_1, \ldots, R_n is at least the area of S.

Recall that the area of a spherical cap is $2\pi rh$, where r is the radius of the sphere and h is the height of the spherical cap. Since the area of each ring R_i is the difference of the areas of two spherical caps, the area of R_i is $2\pi \times \frac{1}{2} \times d_i$. This implies $\pi d_1 + \cdots + \pi d_n \ge 4\pi \frac{1}{4} = \pi$. Therefore, $d_1 + \cdots + d_n \ge 1$, which is a contradiction.