THE 41 ${ }^{\text {st }}$ ANNUAL (2019) UNIVERSITY OF MARYLAND HIGH SCHOOL MATHEMATICS COMPETITION

PART II SOLUTIONS

1. Let A and S be the ages of Alex and Sam when Pat was born. We know that $A S=42$ and $A+33$ is prime. This means, A must be even. Also, since 33 is divisible by $3, A$ cannot be divisible by 3 . Therefore, $A=2$, or 14 . These give us $A+33=35$, which is not prime or $A+33=47$, which is prime. Therefore, $A=14$, and thus $S=3$. This means Sam's age now is 36 .
2. Let E be the intersection of the diagonals of $A B C D$. Since $A C$ and $B D$ are perpendicular, E lies on all four circles.

The area of one of the leaves is equal to the area of one of the semicircles minus the area of triangle $A B E$. The area of each semicircle is $\pi / 2$. The area of right triangle $A B E$ is $2 \times 1 / 2=1$. Thus, the area of each leaf is $\frac{\pi}{2}-1$. Therefore, the answer is $2 \pi-4$.
3. Suppose to the contrary that n is a strongly prime integer such that each of the digits $1,3,7$, or 9 appears in its decimal representation. We observe that the remainders of $1379,3179,3719,1739,3791$, 9371,7139 when divided by 7 , are $0,1,2,3,4,5$, and 6 , respectively. This implies for every integer x, one of the integers $x+1379, x+3179, x+3719, x+1739, x+3791, x+9371, x+7139$ is divisible by 7 .

Suppose m is an integer obtained from all digits of n except for one of each $1,3,7$, and 9 . Then, by what we discussed above, one of the integers $m 1379, m 3179, m 3719, m 1739, m 3791, m 9371, m 7139$ is divisible by 7 , which is a contradiction.

Note: It has also been shown (See https://www.jstor.org/stable/3618302) that every strongly prime number must be a permutation of a number of form $a a \cdots a a b$, i.e. it cannot have more than two distinct digits.
4. The first few terms of a_{n} and b_{n} are $a_{1}=0, a_{2}=1, a_{3}=2, a_{4}=9$, and $b_{1}=1, b_{2}=1, b_{3}=3$. We notice that $a_{2} / b_{1}=1, a_{3} / b_{2}=2$, and $a_{4} / b_{3}=3$. We suspect the answer might be n.

First, we find a recursion for a_{n}. Suppose we have a valid permutation of $1,2, \ldots, n+1$, where $n+1$ is placed in position $j \neq n+1$. If j is placed in position $n+1$, then we get a valid permutation for the numbers $1,2, \ldots, j-1, j+1, \ldots, n$. Since there are n choices for j this gives us $n a_{n-1}$ permutations. If $n+1$ is placed in the j-th position but j is not placed in position $(n+1)$, then thinking about position $n+1$ as position j, the condition becomes that j is not in the j-th position, which gives us a valid
permutation for $1,2, \ldots, n$. This gives us $n a_{n}$ valid permutations. Therefore, $a_{n+1}=n a_{n}+n a_{n-1}$ for all $n \geq 2$.
For b_{n}, note that a valid permuation for $1,2, \ldots, n+1$ can be obtained from a permutation of $1,2, \ldots, n$ in two ways.

- By inserting $n+1$ anywhere, except after n, in a valid permutation of $1,2, \ldots, n$. This gives us $n b_{n}$ permutations.
- By starting from a permutation of $1,2, \ldots, n$ where there is precisely one i for which $i(i+1)$ appears and then inserting $n+1$ between i and $i+1$. Fixing i we observe that $i(i+1)$ is not allowed to appear before $i+2$ or after $i-1$, which means there are precisely b_{n-1} such permutations of $1,2, \ldots, n$. Allowing $i=1,2, \ldots, n-1$, we obtain $(n-1) b_{n-1}$ valid permutations. Therefore, $b_{n+1}=n b_{n}+(n-1) b_{n-1}$.

Setting $c_{n}=(n-1) b_{n-1}$, we have $b_{n}=c_{n}+c_{n-1}$, which implies $c_{n+1}=n c_{n}+n c_{n-1}$, which is the same recursion as the one we obtained for a_{n}. Also, note that $c_{2}=a_{2}=1$, and $c_{3}=a_{3}=2$. Therefore, $c_{n}=a_{n}$, which proves $a_{n+1}=n b_{n}$. Thus, for all $n \geq 1$, we have $\frac{a_{n+1}}{b_{n}}=n$, and in particular $\frac{a_{2020}}{b_{2019}}=2019$.
5. First solution. For every k, we have

$$
\frac{a_{k}}{1+a_{k+1}-a_{k-1}}=\frac{a_{k}\left(1-a_{k+1}+a_{k-1}\right)}{1-\left(a_{k+1}-a_{k-1}\right)^{2}} \geq a_{k}\left(1-a_{k+1}+a_{k-1}\right)
$$

Summing this up over k and noticing that $\sum_{k=1}^{n} a_{k}\left(1-a_{k+1}+a_{k-1}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n}\left(a_{k} a_{k-1}-a_{k} a_{k+1}\right)=$ $1+0=1$, we obtain the inequality.

Second solution. Using Cauchy-Shwarz Inequality we have

$$
\left(\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k+1}-a_{k-1}}\right)\left(\sum_{k=1}^{n} a_{k}\left(1+a_{k+1}-a_{k-1}\right)\right) \geq\left(\sum_{k=1}^{n} a_{k}\right)^{2}=1
$$

Note that $\sum_{k=1}^{n} a_{k}\left(1+a_{k+1}-a_{k-1}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n}\left(a_{k} a_{k+1}-a_{k} a_{k-1}\right)=1+0=1$. Thus, we obtain the desired inequality.

