$29^{\text {th }}$ ANNUAL UNIVERSITY OF MARYLAND
 HIGH SCHOOL MATHEMATICS COMPETITION
 PART II
 SOLUTIONS

1. Solution: One way: Suppose the first three hobbits have a, b, and c rubles. Then $a+b+c=2007$. If the fourth hobbit has d rubles, then $b+c+d=2007$, which implies that $a=d$. If the fifth hobbit has e rubles, then $c+d+e=2007$. This implies that $e=b$. Similarly, the sixth has c, and the amounts continue to cycle through a, b, c. Therefore, the 98 th has b, the 99 th has c, and the 100th has a. Together, the 99th, 100th, and 1st have $2007=c+a+a$, so $a=b$. Also, the 100th plus the 1st plus the 2nd have $2007=a+a+b$. so $a=c$. Therefore, $a=b=c$, and they all have 669 rubles.
Another solution: Let T be the total number of rubles among all 100 hobbits. Consider one hobbit, who has x rubles. The remaining 99 hobbits can be grouped into 33 groups of three, so these 99 total 33×2007 rubles. Therefore, $T=$ $x+33 \times 2007$. This implies that x is independent of the choice of hobbit, so all hobbits have the same amount, which must be 669 .
2. Solution: One way: Let a be her age. Write $a=2^{x} 3^{y} 5^{z} \ldots$. Then $b^{3}=$ $(2 / 3) a^{2}=2^{2 x+1} 3^{2 y-1} 5^{3 z} \cdots$. For this to be a cube, all the exponents must be multiples of 3 . The smallest possibility is therefore $x=1, y=2, z=0, \ldots$ This yields $a=18$.
The second smallest possibility for a is obtained by increasing one of the exponents. To ensure that the exponents in b^{3} are multiples of 3 , the exponent must be increased by 3 . The smallest increase is obtained by increasing x to 4 , which yields $a=2^{4} 3^{2}=144$.
Another solution: Write $a=b \sqrt{3 b / 2}$. We see that $3 b / 2$ must be a square. The smallest b that works is $b=6$, which yields $a=18$. The second smallest is $b=24$, which yields $a=144$.
3. Solution: One way: Observe that the denominator factors as $n(n+1)(n+2)$. We claim that

$$
\frac{1}{4}-\sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)}=\frac{1}{2(N+1)(N+2)}
$$

for all $N \geq 1$. Since

$$
\frac{1}{2(N+1)(N+2)}-\frac{1}{(N+1)(N+2)(N+3)}=\frac{1}{2(N+2)(N+3)},
$$

the claim is easily proved by induction. Letting $N=2007$ yields the desired inequality.

Another solution: Write

$$
\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left(\frac{1}{n}-\frac{2}{n+1}+\frac{1}{n+2}\right)
$$

(this is a partial fraction decomposition). The sum for $n=1$ to $n=2007$ becomes

$$
\frac{1}{2}\left(\left(1-\frac{2}{2}+\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)+\cdots+\left(\frac{1}{2007}-\frac{2}{2008}+\frac{1}{2009}\right)\right)
$$

The terms in the middle cancel, leaving

$$
\frac{1}{2}\left(1-\frac{1}{2}-\frac{1}{2008}+\frac{1}{2009}\right)=\frac{1}{4}-\frac{1}{2 \cdot 2009 \cdot 2009}<\frac{1}{4}
$$

4. Solution: (a) Let P be any point on $B C$. Let x be the distance from P to $A B$ and y be the distance from P to $A C$. Then $(A B) x+(A C) y=2 \times$ area of $A B C$. If $A B=B C$, then $x+y=2($ area $) /(A B)$, which is independent of P. Conversely, suppose there are distinct points P_{1} and P_{2} such that $x_{1}+y_{1}=x_{2}+y_{2}$. Then we have the system of equations

$$
\begin{aligned}
(A B) x_{1}+(A C) y_{1} & =(A B) x_{2}+(A C) y_{2} \\
x_{1}+y_{1} & =x_{2}+y_{2}
\end{aligned}
$$

Multiply the second equation by $A B$ and subtract to obtain $(A C-A B) y_{1}=$ $(A C-A B) y_{2}$. Since $B C$ is not parallel to $A B$, we must have $y_{1} \neq y_{2}$. Therefore, $A C=A B$, so the triangle is isosceles.
(b) Label the vertices of the quadrilateral $A B C D$.

We'll first show that angle B equals angle D. Suppose that $B C \leq D C$ (the case $D C \leq B C$ is similar). Choose E on side $C D$ so that $B C=B E$. Let F be the intersection of the extension of $B E$ with the extension of $A D$. Let P be any point on $B F$. The solution of part (a) shows that the sum of the distances from P to
sides $C B$ and $C D$ is independent of P. Since the sum of the distances to all four sides of the quadrilateral is constant, the sum of the distances from P to sides $A B$ and $A D$ is independent of P. By part (a), triangle $A B F$ is isosceles. If $F=D$, then both $A B D$ and $C B E$ are isosceles, which implies that angle B equals angle D. Now suppose $D \neq F$. Then $\angle A D C=\angle A F E+\angle A B F$ (each side plus $\angle F D E$ is 180°). Also, $\angle E B C=\angle B E C=\angle D E F$, and $\angle A F E=\angle A B F$. Therefore, $\angle A D E=\angle A B F+\angle E B C=\angle A B C$, which says that angle D equals angle B in the quadrilateral.
Similarly, $\angle A=\angle C$. Since the sum of the four angles is 360°, we must have $2(\angle A+\angle B)=360$, hence $\angle A+\angle B=180$. This implies that $D A$ is parallel to $B C$. Similarly, $A B$ is parallel to $C D$. Therefore, $A B C D$ is a parallelogram.
5. Solution: Draw a line in the plane. We claim that there are three equally spaced points on this line of the same color: Choose two points P_{1}, P_{2} on the line of the same color, say Red. Let $P_{3} \neq P_{1}$ be the point on the line such that $P_{1} P_{2}=P_{2} P_{3}$. If P_{3} is Red, we are done. Otherwise, P_{3} is Green. Now consider the point $P_{4} \neq P_{2}$ such that $P_{4} P_{1}=P_{1} P_{2}$. If P_{4} is Red, we are done. Therefore, suppose P_{4} is Green. Now consider the midpoint P_{5} of $P_{1} P_{2}$. If P_{5} is Red, then P_{1}, P_{5}, P_{2} are equally spaced Red points. If P_{5} is Green, then P_{4}, P_{4}, P_{3} are equally spaced Green points. This proves the claim.

Let P, Q, R be the equally spaced points on the line, as in the claim.

Let's suppose they are all Red. Choose S so that $P S R$ is similar to $A B C$. If S is Red, we are done. Therefore, assume that S is Green. Let T be the midpoint of $P S$ and let U be the midpoint of $R S$. Then $P T Q$ and $Q U R$ are similar to $A B C$. If either T or U is Red, we are done. Therefore, assume that T and U are Green. Then $T S U$ is an all Green triangle similar to $A B C$.

