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1. Solution: One way: Divide the square into 2k + 1 small squares and one larger
square, as in the left figure. This gives 2k + 2 squares, for any k ≥ 1, so every
even n ≥ 4 is possible. Now divide the larger square into four smaller squares,
as in the right figure. This gives 2k + 5 squares, for every k ≥ 1, so every odd
n ≥ 7 is possible. Therefore, every n ≥ 6 is possible.

Another solution: If we can divide into n squares, we can subdivide one of the
squares into 4 smaller squares and obtain n+3 squares. Since it is easy to divide
the original square into 4 squares, we obtain 7, 10, 13, . . . this way. Similarly,
we can explicitly divide the original square into 6 squares (the case k = 1 in
the first solution) and obtain 9, 12, 15, . . . . We can also explicitly divide the
original square into 8 squares (the case k = 2 in the first solution) and obtain
8, 11, 14, . . . . Therefore, all n ≥ 6 are possible.

2. Solution: One way: Note that 52 = 25, 352 = 1225, and 3352 = 112225.
Therefore, we guess that x = 333 · · ·3335 satisfies x2 = n, where there are 2008
threes. Multiply x × x by the standard multiplication algorithm:

3 3 3 · · · 3 3 3 5
× 3 3 3 · · · 3 3 3 5

1 6 · · · 6 6 6 7 5
1 0 0 0 0 · · · 0 0 5

1 0 0 0 · · · 0 0 5
1 0 0 0 · · · 0 0 5

1 0 0 0 · · · 0 0 5
· · · · · · · · ·

· · · · · ·

1 0 0 0 · · · 0 5

1 1 1 1 · · · 1 2 2 2 · · · 2 2 2 2 5

An easy count shows that there is the correct number of ones and twos, so x2 = n.



Another solution: In the notation of the first solution, we have 3x = 1000 · · ·0005,
so 9x2 = 1000 · · ·10 · · ·25. Divide by 9 to get n, so n = x2.

A third solution: 111 · · ·111 (with 2008 ones) equals (102008−1)/9. Therefore,

n = 102010((102008
− 1)/9) + 200((102008

− 1)/9) + 25.

Therefore,
9n = 104018 + 102010 + 25 = (102009 + 5)2.

Therefore, n is a perfect square.

3. Solution: Note that for any initial n, either Player I or Player II has a winning
strategy: For example, if Player II does not have a winning strategy, then there
is a sequence of moves by Player I for which Player II cannot respond to obtain
a win. On the other hand, if Player I does not have a winning strategy, then
Player II has a winning response to every sequence of moves.

Suppose there are only finitely many n for which Player II has a winning strategy
(there exist such n, for example, n = 2). Let N be the largest such n. Let
n1 = N + 1 + N2. Since n1 < (N + 1)2 = 2N + 1 + N2, Player I can remove at
most N2 stones. Therefore, there will be at least n1 − N2 = N + 1 > N stones
remaining. By the choice of N , the first player has a winning strategy for this
number of stones. Since it is Player II’s turn to play, Player II is effectively the
first player and therefore can use the winning strategy to win the game. Since
n1 > N , we see that N is not the largest n for which Player II has a winning
strategy. This contradiction shows that the set of winning n’s for Player II must
be infinite.

4. Solution: (a) We need two facts. First, if the midpoints of the sides of a convex
quadrilateral are connected, the result is a parallelogram. (This is proved by
noting that the line joining the midpoints of two sides of a triangle is parallel
to the third side. In the present situation, the “third side” is a diagonal of the
quadrilateral.) Second, the diagonals of a parallelogram bisect each other. This
is well known.

Let the dividing points on AD be R1, R2, . . . , R7, and let the dividing points on
BC be S1, S2, . . . , S7.

First we show that P4Q4 is divided into 8 equal segments. Since P4S4Q4R4 is a
parallelogram, its diagonals P4Q4 and R4S4 bisect each other. Call the point of
intersection O. Then P4O and OQ4 have equal lengths. Now consider R2P4S2O,
which connects the midpoints of a quadrilateral, and hence is a parallelogram.
Its diagonals are R2S2 and P4O, which therefore bisect each other, say at T .



Considering the parallelogram R1P4S1T shows similarly that R1S1 bisects P4T .
The fact that the other lines RiSi divide P4Q4 into equal length segments follows
in the same way. Similarly, the lines PiQi divide R4S4 into equal segments.

Now apply the same argument to each of the quadrilaterals AP4OR4, P4BS4O,
S4CQ4O, and DR4OQ4 to show that each of the lines P2Q2, P6Q6, R2S2, and
R6S6 is divided into 8 equal segments. Finally, apply the argument to each of
the 16 two-by-two quadrilaterals to find that each of the lines is divided into 8
equal segments, as desired.

(b) Suppose a convex quadrilateral UV WX is divided into a two-by-two checker-
board by dividing each side into two equal segments. Let points J, K, L, M be
as in the diagram. Let N be the intersection of JL and LM . The triangles
UNJ and V NJ have opposite colors but the same areas. Similarly for the pair
V NK and WNK, the pair WNL and XNL, and the pair XNM and UNM .
Therefore, in the two-by-two case, the total black area equals the total white
area.
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The eight-by-eight is divided into 16 two-by-two checkerboards, each of which
has each of its sides divided into two equal segments, by part (a). Since the
two-by-two case is true for each of these smaller quadrilaterals, the total white
area equals the total black area.

5. Solution: If 10h has 2008 digits in base 2, and 10k has 2008 digits in base 5,
then

22007 < 10h < 22008

52007 < 10k < 52008

Multiplying yields 102007 < 10h+k < 102008, which is impossible since 102007 and
102008 are successive powers of 10, so there cannot be another power of 10 between
them. Therefore, we cannot have 2008 digits both in base 2 and in base 5. Now



suppose no power of 10 has 2008 digits in base 2 or in base 5. Then

10h < 22007 < 22008 < 10h+1

10k < 52007 < 52008 < 10k+1

for some integers h, k. Multiplying yields 10h+k < 102007 < 102008 < 10h+k+2,
which is impossible since there cannot be two distinct powers of 10 between
10h+k and 10h+k+2.

In case you’re wondering, 101403 has 2008 digits in base 5.


