THE $42^{\text {nd }}$ ANNUAL (2021) UNIVERSITY OF MARYLAND
 HIGH SCHOOL MATHEMATICS COMPETITION
 PART I SOLUTIONS

1.

$$
\frac{\left(\frac{1 / 2}{3 / 4}\right)}{\left(\frac{5 / 6}{7 / 8}\right)}=\frac{\frac{1}{2} \cdot \frac{4}{3}}{\frac{5}{6} \cdot \frac{8}{7}}=\frac{2}{3} \cdot \frac{21}{20}=\frac{7}{10}
$$

The answer is \mathbf{d}.
2. Jarad has walked $2774 \times 5280=$ feet. This means

$$
s=\frac{2774 \times 5280}{2.5}=2774 \times 2112=5,858,688
$$

The answer is \mathbf{a}.
3. The areas of each of the pizzas are as follows:
a. Huey's pizza is $10 \times 10=100$ square inches.
b. Dewey's pizza is $\pi 6^{2}=36 \pi \approx 113$ square inches.
c. Louie's pizza has area $6 \times 24=144$ square inches.

The answer is \mathbf{a}.
4. The number of minutes that Peter needs to run to finish the race is

$$
\frac{10}{15} \cdot 60=40
$$

Since Peter sleeps for 4.5 hours, it will take him 5 hours and 10 minutes to finish the race. On the other hand, it takes Terrapin $10 / 2=5$ hours to finish the race. Therefore, the answer is \mathbf{c}.
5. The dog crosses the x-axis precisely when $\cos (2 \pi x)=0$. This happens precisely twice in each of the intervals

$$
[0,1),[1,2), \ldots,[19,20] .
$$

Thus there are 40 places where the dog crosses the x-axis. The answer is \mathbf{d}.
6. Each even year the account balance is multiplied by 1.20 , and each odd year the account balance is multiplied by 0.83 . Therefore, after 100 years the account balance is

$$
100 \times(1.2 \times 0.83)^{50}=100 \times(0.996)^{50}<100
$$

The answer is \mathbf{a}.
7. The number of possible tags is $26^{2}=676$. Since, $2021>2 \times 676$ at least three people must have identical name tags. Since $2021<3 \times 676$ it is possible that no four people have identical name tags. The answer is \mathbf{b}.
8. Each of the terms in brackets is of the following form:

$$
\frac{1}{n}+\frac{2}{n}+\cdots+\frac{n-1}{n}=\frac{1+2+\cdots+(n-1)}{n}=\frac{n(n-1) / 2}{n}=\frac{n-1}{2}
$$

The above sum is obtained using the arithmetic sequence sum. Since n ranges from 2 to 100 we obtain the following sum:

$$
\frac{1}{2}+\frac{2}{2}+\cdots+\frac{99}{2}=\frac{99 \times 100 / 2}{2}=99 \times 25=2475
$$

The answer is \mathbf{d}.
9. The number of ways to rearrange 8 pieces is 8 !. Swapping each identical pair of rooks, bishops and knights does not change the arrangement. Thus, the answer is

$$
\frac{8!}{2 \times 2 \times 2}=7!
$$

The answer is \mathbf{c}.
10. Since the diagonal of $A B C D$ has the same length as the side of $M(A B C D)$, its area is double the area of $A B C D$. Therefore, the area of $M^{(n)}(A B C D)$ is 2^{n}. The smallest n for which $2^{n} \geq 2021$ is $n=11$. The answer is \mathbf{a}.
11. The expression can be written as follows:
$n!+(n+1)!+(n+2)!=n!(1+(n+1)+(n+1)(n+2))=n!(n+2+(n+1)(n+2))=n!(n+2)^{2}$.
We note that if $n \geq 10$, then n ! is divisible by 100 , since 2,5 , and 10 appear in the product $1 \times 2 \times \cdots \times n$. Therefore, we need to have $n<10$.

For $n=1,2,4$ the product $n!(n+2)^{2}$ has no factors of 5 .

For $n=3$, the product $3!\times 5^{2}$ is not divisible by 4 .

For $n=5,6,7,9$ the product $n!(n+2)^{2}$ has only one factor of 5 .

For $n=8$, we get $8!\times 10$ which is divisible by 100 . Thus, the desired positive integers are $n=1,2,3,4,5,6,7,9$. The answer is \mathbf{d}.
12. The given equation is equivalent to

$$
2\left(b^{3}+2 b^{2}+3 b+4\right)=2 b^{3}+5 b^{2}+b+2 \Rightarrow b^{2}-5 b-6=0 \Rightarrow b=6,-1
$$

The answer is \mathbf{a}.
13. Taking logarithm of both sides we obtain the following:

$$
(\log x)^{2}=25 \Rightarrow \log x= \pm 5 \Rightarrow x=10^{5}, 10^{-5}
$$

The answer is \mathbf{e}.
14. The given information means

$$
(x+80200)(x-80200)=p^{3},
$$

for some prime p. Since p is prime, we have two possibilities:
a. $x+80200=p^{2}$ and $x-80200=p$; or
b. $x+80200=p^{3}$ and $x-80200=1$.

Subtracting we obtain

$$
2 \times 80200=p^{2}-p \text { or } p^{3}-1
$$

We see $2 \times 80200=400 \times 401$, and since 401 is prime, $p=401$ works. The second possibility does not work. So, $x=80200+p=80601$. The answer is \mathbf{b}.
15. By completing the squares we notice that the second curve is also a circle:

$$
(x-2)^{2}+(y-3)^{2}=1
$$

The distance between the centers of these two circles is $\sqrt{4+9}=\sqrt{13}$. Thus, the shortest distance $|P Q|$ is $\sqrt{13}-2$. The answer is \mathbf{c}.
16. Since both quadratics have distinct real roots we must have: $a^{2}>4 b$, and $b^{2}>4 a$. Combining the two we obtain

$$
\frac{a^{2}}{4}>b>2 \sqrt{a} \Rightarrow a^{2}>8 \sqrt{a} \Rightarrow a^{4}>64 a \Rightarrow a^{3}>64 \Rightarrow a>4
$$

Furthermore, for every such a, the inequality $a^{2} / 4>2 \sqrt{a}$ holds, and thus there is a value of b that satisfies $a^{2} / 4>b>2 \sqrt{a}$. This means $a>4$ is the best inequality that describes all possible values of a. The answer is \mathbf{e}.
17. K be the foot of the altitude from B to $A C$. We see that $|A H|=|B C|$ and $\angle K A H=\angle C B K$, since both are complementary to either $\angle A C B$ or $\angle A H B$, depending of whether $A B C$ is an acute or an obtuse triangle. Therefore, the triangle $A H K$ and $B C K$ are congruent. This implies $|A K|=|B K|$. Therefore, $\angle B A C=45^{\circ}$ if it is acute and 135° if it is obtuse. The answer is \mathbf{e}.
18. We have the following:

$$
3^{15}+3^{11}+3^{6}+1=\left(3^{5}\right)^{3}+3 \cdot\left(3^{5}\right)^{2}+3 \cdot 3^{5}+1=\left(3^{5}+1\right)^{3}=244^{3}=4^{3} \cdot 61^{3}
$$

Therefore, the largest prime factor of this number is 61 . The answer is \mathbf{b}.
19. The first few terms of the sequence are

$$
P_{1}=9999, P_{2}=9998, P_{3}=9995, P_{4}=9990, P_{5}=9983
$$

We guess that $P_{k}=9999-(k-1)^{2}$. Note that if this equality holds for P_{k-1} and P_{k-2}, then by the given recursion we obtain

$$
\begin{aligned}
P_{k} & =2\left(9999-(k-2)^{2}\right)-\left(9999-(k-3)^{2}\right)-2 \\
& =9999-2(k-2)^{2}+(k-3)^{2}-2 \\
& =9999-2 k^{2}+8 k-8+k^{2}-6 k+9-2 \\
& =9999-k^{2}+2 k-1 \\
& =9999-(k-1)^{2}
\end{aligned}
$$

Therefore, P_{k} is positive precisely when $9999>(k-1)^{2}$, i.e. $100>k-1$. This happens when $k=1,2, \ldots, 100$. The answer is \mathbf{e}.
20. Using the Pythagorean Theorem in triangle $A O M, B O N$, and $C O P$ we obtain the following:

$$
\begin{aligned}
& |O A|^{2}=|O M|^{2}+|A M|^{2} \\
& |O B|^{2}=|O N|^{2}+|B N|^{2} \\
& |O C|^{2}=|O P|^{2}+|C P|^{2}
\end{aligned}
$$

This implies

$$
|A M|^{2}+|B N|^{2}+|C P|^{2}=|O A|^{2}+|O B|^{2}+|O C|^{2}-|O M|^{2}-|O N|^{2}-|O P|^{2} .
$$

Similar argument shows this sum is also equal to $|B M|^{2}+|C N|^{2}+|A P|^{2}$. Therefore,

$$
|A M|^{2}+|B N|^{2}+|C P|^{2}=|B M|^{2}+|C N|^{2}+|A P|^{2} .
$$

Substituting the given values we obtain:

$$
9+16+16=25+4+|A P|^{2} \Rightarrow|A P|^{2}=12 \Rightarrow|A P|=\sqrt{12}=2 \sqrt{3}
$$

The answer is \mathbf{c}.
21. Consider two points A, C with $|A C|=10$ and a ray $\overrightarrow{C X}$ for which $\angle A C X=30^{\circ}$. To create a triangle $A B C$ with given conditions, we need to draw a circle centered at A of radius c. For this circle to intersect $\overrightarrow{C X}$ at least twice, the number c must be more than the distance from A to $\overrightarrow{C X}$. Dropping a perpendicular from A to $\overrightarrow{C X}$ we get a $30-60-90$ triangle. Thus the distance from A to $\overrightarrow{C X}$ is 5 . Thus, we must have $5<c$. For this circle to intersect the ray $\overrightarrow{C X}$ at two points we must also have $c<10$. Therefore, $5<c<10$. The answer is a.
22. Let $m=n+2$ and rewrite $(n+15)^{2}$ as $(m+13)^{2}=m^{2}+26 m+13^{2}$. This is divisible by m precisely when m divides 13^{2}. Since $m=n+2$ is at least 3 we need to have $n+2=13$, or 169 . Thus, the possible values of n are 11 and 167. Their sum is 178 . The answer is \mathbf{c}.
23. Since we are only interested in odd coefficients, we will replace each odd coefficient by 1 and each even coefficient by zero. In other words, we will consider all coefficients mod 2 . This gives us the following:

$$
\begin{equation*}
\left(1+x+x^{2}\right)^{2}=1+2 x+3 x^{2}+2 x^{3}+x^{4}=1+x^{2}+x^{4}(\bmod 2) \tag{*}
\end{equation*}
$$

Repeating this process we have

$$
\left(1+x+x^{2}\right)^{4}=1+x^{4}+x^{8} \quad(\bmod 2)
$$

And hence

$$
\left(1+x+x^{2}\right)^{100}=\left(1+x^{4}+x^{8}\right)^{25}(\bmod 2)
$$

For simplicity we will set $y=x^{4}$ and consider $\left(1+y+y^{2}\right)^{25}$. Writing 25 as a sum of powers of 2 and repeating $(*)$ we obtain the following:

$$
\begin{aligned}
\left(1+y+y^{2}\right)^{25} & =\left(1+y+y^{2}\right)^{16}\left(1+y+y^{2}\right)^{8}\left(1+y+y^{2}\right) \\
& =\left(1+y^{16}+y^{32}\right)\left(1+y^{8}+y^{16}\right)\left(1+y+y^{2}\right) \\
& =\left(1+y^{8}+y^{24}+y^{40}+y^{48}\right)\left(1+y+y^{2}\right)(\bmod 2)
\end{aligned}
$$

This yields 15 terms with exponents

$$
0,8,24,40,48,1,9,25,41,49,2,10,26,42,50 .
$$

Thus, there are 15 terms with odd coefficients. The answer is a.
24. To each subset S of $\{0,1, \ldots, 19\}$ associate a sequence $a_{0}, a_{1}, \ldots, a_{19}$ for which

$$
a_{n}= \begin{cases}1 & \text { if } n \in S \\ 0 & \text { if } n \notin S\end{cases}
$$

The size of $S \cap\{i, \ldots, i+9\}$ is $a_{i}+a_{i+1}+\cdots+a_{i+9}$. Suppose $0 \leq i \leq j \leq 19$. The difference between the sizes of $S \cap\{i, \ldots, i+9\}$ and $S \cap\{j, \ldots, j+9\}$ is

$$
\begin{aligned}
a_{i}+a_{i+1}+\cdots+a_{i+9}-a_{j}-a_{j+1}-\cdots-a_{j+9} & =a_{i}+\cdots+a_{j-1}-a_{i+10}-\cdots-a_{j+9} \\
& =\left(a_{i}-a_{i+10}\right)+\cdots+\left(a_{j-1}-a_{j+9}\right)
\end{aligned}
$$

In order for S to satisfy the given condition (c) we need the above sum to be 0,1 , or -1 . If we set $s_{i}=a_{i}-a_{i+10}$ for every $0 \leq i \leq 9$, we see that $s_{i}=0, \pm 1$ for all i and the given conditions can be summarized as follows:
a. $s_{0}=1$.
b. For every $0 \leq i<j \leq 9$ the sum $s_{i}+\cdots+s_{j-1}$ is 0,1 or -1 .

Every s_{i} that is zero does not change any of the sums in (b), above. Therefore, we can only focus on the non-zero s_{i} 's. Since $s_{0}=1$, for the sums to lie between -1 and 1 we need the non-zero s_{i} 's to alternate: $1,-1,1, \ldots$. Therefore, if s_{i} is not zero, then it has exactly one possible nonzero value. If $s_{i}=0$ then we have two possibilities: $a_{i}, a_{i+10} \in S$ or $a_{i}, a_{i+10} \notin S$. If $s_{i}=1$, then we have one possibility $a_{i} \in S$ and $a_{i+10} \notin S$. If $s_{i}=-1$, then we have one possibility $a_{i} \notin S$ and $a_{i+10} \in S$. This means, for each pair $\left(a_{i}, a_{i+10}\right)$ with $1 \leq i \leq 9$ there are three possibilities. So, there are 3^{9} possible subsets S. The answer is \mathbf{b}.
25. We will show for each $1 \leq i, j \leq 20$ with $O A_{i} \perp O A_{j}$, we have

$$
\begin{equation*}
\frac{1}{\left|O A_{i}\right|^{2}}+\frac{1}{\left|O A_{j}\right|^{2}}=\frac{7}{10} \tag{*}
\end{equation*}
$$

Let m be the slope of $O A_{i}$. The point A_{i} then is of the form $(x, m x)$. Since A_{i} is on the given ellipse, we must have:

$$
\frac{x^{2}}{2}+\frac{m^{2} x^{2}}{5}=1
$$

This implies

$$
x^{2}=\frac{10}{5+2 m^{2}} .
$$

Therefore,

$$
\frac{1}{\left|O A_{i}\right|^{2}}=\frac{1}{x^{2}+m^{2} x^{2}}=\frac{1}{x^{2}} \cdot \frac{1}{1+m^{2}}=\frac{5+2 m^{2}}{10\left(1+m^{2}\right)} .
$$

Similarly, since the slope of $O A_{j}$ is $-1 / m$ we have

$$
\frac{1}{\left|O A_{j}\right|^{2}}=\frac{5+2 / m^{2}}{10\left(1+1 / m^{2}\right)}=\frac{5 m^{2}+2}{10\left(m^{2}+1\right)}
$$

Adding the two we obtain:

$$
\frac{1}{\left|O A_{i}\right|^{2}}+\frac{1}{\left|O A_{j}\right|^{2}}=\frac{7+7 m^{2}}{10\left(1+m^{2}\right)}=\frac{7}{10}
$$

Since we may pair up A_{1}, \ldots, A_{20} into ten pairs of points A_{i}, A_{j} for which $O A_{i}$ and $O A_{j}$ are perpendicular, the answer is $10 \cdot \frac{7}{10}=7$. The answer is \mathbf{e}.

Remark. Note that when $m=0$, the above argument is not valid, since $1 / m$ is undefined. However, in that case $\left|O A_{i}\right|^{2}=1 / 2$ and $\left|O A_{j}\right|^{2}=1 / 5$ and thus the equality ($*$) still holds.

