## 2001 SOLUTIONS, PART I

Problem 1. The numbers are: $2^{81}, 2^{18}, 2^{24}, 2^{64}, 2^{48}$, respectively. Answer: a.
Problem 2. Dividing all three by (9!) ${ }^{1 / 2}$ yield 10, 9•10 $1 / 2$, and $10^{1 / 2} \cdot 11^{1 / 2}$, respectively. Answer: e.
Problem 3. When $\mathrm{x}<=-2,|\mathrm{x}|=-\mathrm{x}$ and $|\mathrm{x}+2|=-\mathrm{x}-2$, sp the equation holds. It fails in all other cases. Answer: a.
Problem 4. Since $\log (2)+\log (3)=\log (6)$, the expression is equal to $10^{\log (6)}=6$. Answer: b.
Problem 5. $43^{2}=1849$ is the only perfect square in the 1800 's, so he was born in 1849-43=1806. Answer: a.
Problem 6. Every blab is a blib, and some of these are blubs, so (since there are some blabs) some blibs are blubs. Answer: c.

Problem 7. If $\mathrm{D}=\#$ of dogs and $\mathrm{C}=\#$ of cats, then $\mathrm{D}+24=2 \mathrm{C}$ and $\mathrm{D}=2(\mathrm{C}-\mathrm{x})$. Thus, $\mathrm{D}+24=\mathrm{D}+2 \mathrm{x}$, so $\mathrm{x}=12$. Answer: b .
Problem 8. $29=(27+36+25+28) / 4$. Note that 29 is also the mean of all 5 numbers. Answer: d.
Problem 9. Label the trapezoid ABCD , with AB of length 20 on the bottom and CD of length 10 on the top. To find the length of the diagonal $A D$, drop a perpendicular from $D$ onto $A B$, and let $X$ be the place where it intersects. Then $D X B$ is a right triangle, so $\mathrm{DX}^{2}=89-5^{2}$. Thus, $\mathrm{DX}=8$. Since DXA is a right triangle, $\mathrm{AD}^{2}=15^{2}+8{ }^{2}$. Answer: c.

Problem 10. We count the cases when Romeo (R) is to the left of Juliet (J) and Caesar (C) is to the left of Brutus (B) and multiply by 4 . Label the positions $1,2,3,4,5,6$. If R is in position 1 , then J is in 2 . If in addition, C is in 3 then there are 4 possibilities; if C is in 4 , then there are two possibilites and nothing else is possible. So there are 6 possibilities when R is in 1 . When $R$ is in 2 , $J$ is in 3 . If $C$ is in 1 , then there are 6 possibilities, but if $C$ is in 4 , there are 2 cases, giving a total of 8 cases when $R$ is in 2 . When $R$ is in 3 , $J$ is in 4 . If $C$ is in 1 , then there are 4 cases, while if $C$ is in 2 , then there are 4 cases, giving a total of 8 cases. When $R$ is in $4, \mathrm{~J}$ is in 5 . If C is in 1 , then B can be in two places, giving a total of 4 cases. If $C$ is in 2 , then $B$ must be in 6 , giving 2 cases, and if $C$ is in 3, then $B$ must also be in 6 , giving 2 cases for 8 cases total when $R$ is in 4 . When $R$ is in 5 , $J$ is in 6 . If $C$ is in 1 , there are 4 cases; if $C$ is in 2 , there are 2 cases, giving 6 cases. Thus, there are $6+8+8+8+6=36$ cases satisfying these addtional constraints, so there are $4 \cdot 36=144$ cases altogether.
Answer: d.
Problem 11. Multiplying by $\sin (x)$ and $\operatorname{simplifying}$ yields $\sin ^{2}(x)=\cos (x)$. Let $u=\cos (x)$. Then, $\operatorname{since} \sin ^{2}(x)+\cos ^{2}(x)=1$, $u=1-u^{2}$. Applying the quadratic formula and throwing out a root since $|u|<=1$ yields $u=\left(5^{1 / 2}-1\right) / 2$. Answer: $c$.

Problem 12. The total amount of chocoalate in a bunny is proportional to the CUBE of its height. So, assuming that the amount of chocolate in a 1 -inch bunny is k , the amount of chocolate consumed by F is $(5 \mathrm{k})^{3}=125 \mathrm{k}^{3}$, by M is $10 \cdot(2.5 \mathrm{k})^{3}$, and by B is $100 \cdot \mathrm{k}^{3}$. Clearly, $\mathrm{B}<\mathrm{F}$ and $\mathrm{F}<\mathrm{M}$ since $2.5^{3}>12.5$. Answer: c .

Problem 13. The proportion 17:27 implies that we want 510 lbs of Copper and 810 lbs of Tin. If A and B represent the amounts of each alloy, we have two equations in two unknowns: $1 / 3 \mathrm{~A}+2 / 5 \mathrm{~B}=510$ and $2 / 3 \mathrm{~A}+3 / 5 \mathrm{~B}=810$. Thus $\mathrm{A}=270$ and $B=1050$. Answer: e.

Problem 14. If S is the sum of the integers from $\mathrm{k}+1$ to $\mathrm{k}+\mathrm{n}$, then $\mathrm{S}+100$ is the sum of $\mathrm{k}+\mathrm{n}+1$ to $\mathrm{k}+2 \mathrm{n}$. Each of the n terms in the latter sum is $n$ more than the corresponding entry in the former sum. That is, $\mathrm{n}^{2}=100$, so $\mathrm{n}=10$. Answer: a.

Problem 15. Larry (L) and Curly (C) drive for 3 hours ( 75 miles). Then C got out, and L drives backward for 2 hours. L picks up Moe and they drive for 3 more hours. Total time $=8$ hours. Answer: d.

Problem 16. Suppose that the radius of the circle is r . Let s be the side length of the square inside the semicircle, and let $t$ be the side length of the square inside the full circle. We want to calculate $s^{2} / t^{2}$. In the semicircle, there is a right triangle with sides $s, s / 2$, and hypotenuse $r$. Thus, $r^{2}=5 s^{2} / 4$, while the full circle gives a right triangle with sides $t / 2, t / 2$ and hypotenuse r. So $\mathrm{r}^{2}=\mathrm{t}^{2} / 2$. So $\mathrm{s}^{2} / \mathrm{t}^{2}=2 / 5$. Answer: c .

Problem 17. $(0.1 \mathrm{~mm} /$ day $)\left(1 \mathrm{~km} / 10^{6} \mathrm{~mm}\right)(1 \mathrm{mile} / 1.6 \mathrm{~km})(1$ day $/ 24$ hours $)=2.6 \times 10^{-9} \mathrm{mph}$. Answer: e .
Problem 18. They start fighting at $1: 00 \mathrm{pm}$. At that time they have completed $1 / 3+1 / 4=7 / 12$ of the job. Tom starts painting again at 1:10 and finishes in (5/12) $\cdot 3=5 / 4$ hours. Answer: b.

Problem 19. Let $t$ be the side length of the triangle. There is a right triangle with sides $h, t / 2$ and hypotenuse $t$. So $h^{2}=3 t^{2} / 4$. Thus, the area of the triangle is $1 / 2 t h=h^{2} / 3^{1 / 2}$. The area of the square is $s^{2}$, so $h / s=3^{1 / 4}$. Answer: a.

Problem 20. $(4.5)^{2}+(1.5)^{2}=5 / 8\left(6^{2}\right)$. Answer: c.
Problem 21. Since $3^{8}>5000$, the only numbers are $1^{8}+1^{8}, 1^{8}+2^{8}, 1^{8}+3^{8}, 2^{8}+2^{8}, 2^{8}+3^{8}$. Answer: a.
Problem 22. 2008! is the smallest factorial that is divisible by $2^{2001}$. There are 1004 numbers $<=2008$ that are divisible by 2. Of these, 502 are divisible by 4 . Of these, 251 are divisible by 8 . Of these 125 are divisible by 16 . Of these 62 are divisible by 32 . Of these, 31 are divisible by 64 . Of these, 15 are divisible by 128 . Of these, 7 are divisible by 256 . Of these, 3 are divisible by 512 and finally 1 is divisible by 1024 . Answer: d.

Problem 23. Any root of the polynomial will divide $420=1 \cdot 4 \cdot 3 \cdot 5 \cdot 7$. Thus, the largest number of distinct roots occurs with the polynomial $(x-1)^{3}(x-2)^{2}(x-3)(x-5)(x-7)$ or $(x-1)^{4}(x-4)(x-3)(x-5)(x-7)$. In either of the two cases, there are 5 distinct roots. Answer: b.

Problem 24. Huey can get any of 4 duck's hats, and each of these are symmetric. Assume that Huey gets Dewey's hat. If in addition Dewey gets H's hat, then there 2 possibilities for which hat Donald gets. If Dewey does NOT get H's hat, then there are 3 symmetric possibilities depending on whose hat he gets. Assume Dewey gets Donald's hat. Then there are 3 possibilities. Thus, by symmetry, there are $2+3 \cdot 3=11$ arrangements that start with Huey getting Dewey's hat. By symmetry again, there are $4 \cdot 11=44$ possibilities in all. Answer: c.

Problem 25. Let r be the distance from the center of the circle to a vertex and let s be the length of one side of the original octagon. Let T denote the isocoles triangle with two sides of length r and having base s . The area of the whole octagon is 8 times the area of this triangle. By the Law of Cosines, $s^{2}=r^{2}+r^{2}-2 r^{2} \cos \left(360^{\circ} / 8\right)=r^{2}\left(1-2^{1 / 2}\right)$. Now let $A$ be the midpoint of one side of the octagon, let $B$ be the midpoint of an adjacent side, and let $C$ be the center of the circle. Let D denote the vertex of the large octagon connecting the adjacent sides. Let x denote the length of BC. The area of the smaller octagon is 8 times the area of triangle $A B C$, so we are asked to find the ratio of the area of ABC to the area of $T$. Since the triangle $A B C$ is similar to $T$, this ratio is equal to $(x / r)^{2}$. But CBD is a right triangle with sides $x, s / 2$ and hypotenuse $r$. So $r^{2}=x^{2}+s^{2} / 4$. Combining this with the equation above gives $x^{2}=r^{2}\left(2-2^{1 / 2}\right) / 4$. Answer: $d$.

