2003 SOLUTIONS, PART I

Problem 1. The numbers are $2^{243}, 2^{125}, 3^{32}, 3^{25}$, and 5^{9}, respectively. The first is larger than the second, and since $8=2^{3}$, the first is equal to 8^{81} which clearly dominates the other numbers. Answer: a.
Problem 2. In any circle, the circumference is proportional to the radius (i.e., $\mathrm{C}=2 \mathrm{pi} \cdot \mathrm{r}$), and the area is proportional to the square of the radius (i.e., $\mathrm{A}=\mathrm{pi} \cdot \mathrm{r}^{2}$). The first statement says that the radius of Batman's pizza is 1.2 times the radius of Robin's, hence the area of Batman's pizza is $(1.2)^{2}=1.44$ times the area of Robin's. Answer: e.

Problem 3. There are 12 large dogs, 5 of which are mutts, so 7 are pure breeds. Answer: b.
Problem 4. If x satisfies the inequality, then 3 x is at least 13 units away from -4 , hence 3 x is either less than -17 or greater than 9 . Answer: b ,

Problem 6. $\log _{2}(8)=3$ and $\log _{3}(9)=2$, so x should satisfy $\log _{5}(x)=3-2=1$. Since $5^{1}=5, x=5$. Answer: d.
Problem 7. In the smallest such class there would be exactly one boy. So, if n represents the size of such a class, then $1 / n<7 \%$. Thus, we want the smallest n so that $1 / n<7 / 100$, hence $n=15$. Answer: c .
 37 questions correct. Answer: e.
 main diagonal is $s \cdot 3^{1 / 2}$. But the volume of the cube is s^{3}. Setting these equal, cancelling out s, and taking a square root yields $s=3^{1 / 4}$. Answer: e
 $=1 / 10^{1 / 2}$. Answer: d

Problem 12. Note that $25=10^{\log (25)}$, so
$25^{1 / \log (25)}=\left(10^{\log (25)}\right)^{1 / \log (25)}=10^{1}=10$. Answer: с.
 e.
 all integers, this implies d-b is even. Answer: b
 abbreviates "has a tail". Putting these together yields (T) implies NOT(GE), which is the translation of sentence (a). Answer: a.

Problem 16. For $x>1$, the value of y^{y} (when $y=x^{x}$) is strictly increasing. When $x=4, y=4^{4}=256$ and $\mathrm{y}^{\mathrm{y}}=256^{256}<10^{768}<10^{2003}$ (since $256<10^{3}$). When $\mathrm{x}=5, \mathrm{y}=3125$ so $\mathrm{y}^{\mathrm{y}}>10^{2003}$, so the value of x making $\mathrm{y}^{\mathrm{y}}=10^{2003}$ is between 4 and 5 . Answer: c.

 solution is $\mathrm{c}=6, \mathrm{w}=7$. Answer: c

Problem 18. $(a+(1 / a))^{2}=a^{2}+2+1 / a^{2}=3^{2}=9$, so
$(a-(1 / a))^{2}=a^{2}-2+1 / a^{2}=9-4=5$. Answer: a
 DC. Then the length of $A B=\left(h^{2}+x^{2}\right)^{1 / 2}$ and the length of $A B=\left(h^{2}+y^{2}\right)^{1 / 2}$ Since $A B C$ is similar to $D A C, h / y=($ length of $A B) /($ length of $A C)$, so $h^{2} / y^{2}=\left(h^{2}+x^{2}\right) /\left(h^{2}+y^{2}\right)$, hence $h^{2}=x y$. So the area of the triangle is given by $1 / 2(x+y) h=1 / 2(x+y)(x y)^{1 / 2}$. In this problem, just plug in $x=25$, $y=2003$. Answer: a.
 working together it takes the three pigs exactly one hour to dig the moat. Answer: e
 the second yields $2(C / D)=2 / 35$, hence $D / C=35$. Answer: b.

 $2002 \mathrm{a}+\mathrm{c}=\mathrm{T}$. Hence c=198/2200 T, so c/T=9/100. Answer: a
 $1)=210$. Answer: d.

Problem 24. There a

 then $\mathrm{D}+\mathrm{G}$, then T+D. Answer: b

