2000 SOLUTIONS, PART II

1. If there are at most 44 colors and and most 44 cans of the same color, then the total number of cans is $44 \cdot 44=1936$. This is a contradiction.
2. The answer is NO. Here is an example. The sides of the first triangle are $1,1.5,1.5 \cdot 1.5=2.25$. The sides of the second triangle are $1.5,1.5 \cdot 1.5=2.25,1.5 \cdot 1.5 \cdot 1.5=3.375$. In both cases the triangle inequality is satisfied, so the triangles exist. The triangles are similar. The measures of the 3 angles of the first triangle are all different from each other but are the same as the measures of the corresponding angles of the second triangle.
3. $\left(a_{n+1}\right)^{2}=\left(a_{n}\right)^{2}+2+\left(a_{n}\right)^{-2}>\left(a_{n}\right)^{2}+2$. Therefore, by induction, $\left(a_{n}\right)^{2}>2 n$ for all $n>2$, so $\left(a_{10000}\right)^{2}>20000>141^{2}$, so $a_{10000}>141$.
4. Consider the 250 disks, each of radius $1 / 10$ that are centered at each of the points. The sum of the areas of these disks is 2.5 pi , and the union of the disks is contained inside a disk of radius 1.1 . Since $2.5 \mathrm{pi}>2(1.1)^{2} \mathrm{pi}$, there is a point P (not necessarily in the chosen set) that is contained in at least 3 of the small disks. Thus, the disk of radius $1 / 10$, centered at P contains at least three of the original points.
5. a. Given any five integers, either three of them have the same remainders when divided by 3 or three of them have all different remainders. In both cases, the sum of these three is a multiple of 3, say 3a. Take any five of the remaining $8=11-3$ integers and select three with the sum 3 b . Of the remaining $5=8-3$ integers select three with the sum 3c. Two of the integers a, b, c are of the same parity, say, a and b. The sum $3 a+3 b=3(a+b)$ is divisible by 6 . b. Given 71 integers, select six with the sum $6 a_{1}$ and repeat the procedure ten more times, every time at least 11 integers being available. We obtain eleven pairwise disjoint sixtuples with the sums $6 a_{1}, \ldots, 6 a_{11}$. Of the eleven integers, a_{1} through a_{11}, we can select six, say, a_{1} through a_{6}, with the sum divisible by 6 . The six sixtuples with the sums $6 a_{1}, \ldots, 6 a_{6}$ are the required 36 integers with the sum $6\left(a_{1}+\ldots+a_{6}\right)$ divisible by 36 .
