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1.	One	chilly	morning,	10	penguins	ate	a	total	of	50	fish.	No	fish	was	shared	by	two	or	more	penguins.	Assuming	that
each	penguin	ate	at	least	one	fish,	prove	that	at	least	two	penguins	ate	the	same	number	of	fish.

Answer:	By	way	of	contradiction,	assume	that	all	10	penguins	eat	a	different	number	of	fish.	We	will	argue	that	at	least
55	fish	must	have	been	consumed,	which	is	contrary	to	the	statement	of	the	problem.	Order	the	penguins	in	increasing
order	of	the	number	of	fish	they	ate.	The	first	penguin	ate	at	least	one	fish.	The	second	penguin	ate	at	least	two	fish,
and	arguing	inductively,	the	tenth	penguin	ate	at	least	10	fish.	Hence	at	least	1+2+...+10=55	fish	were	consumed,
contradiction.

2.	A	triangle	of	area	1	has	sides	of	lengths	a	>	b	>	c.	Prove	that	b	>	21/2.

Answer:	Let	A,B,C	denote	the	vertices	of	the	triangle	with	vertex	B	opposite	the	side	of	length	b.	Let	h	be	the	length	of
the	altitude	drawn	from	B	to	the	line	containing	AC.	Since	the	shortest	distance	from	a	point	to	a	line	is	given	by	a
segment	perpendicular	to	the	line,	h	<	=	c,	hence	h	<	b.	But	the	area	of	the	triangle	is	1=(1/2)bh,	so	bh=2.	Since	h	<	b,
b	2	>	2,	hence	b	>	21/2.

3.	Imagine	ducks	as	points	in	a	plane.	Three	ducks	are	said	to	be	in	a	row	if	a	straight	line	passes	through	all	three
ducks.	Three	ducks,	Huey,	Dewey,	and	Louie,	each	waddle	along	a	different	straight	line	in	the	plane,	each	at	his	own
constant	speed.	Although	their	paths	may	cross,	the	ducks	never	bump	into	each	other.	Prove:	If	at	three	separate	times
the	ducks	are	in	a	row,	then	they	are	always	in	a	row.

Answer:	Given	two	points	(x1,y1)	and	(x2,y2)	the	equation	(y-y1)(x2-x1)=(x-x1)((y2-y1)	represents	the	line	passing	through
these	two	points	(it	is	a	linear	equation	satisfied	by	the	coordinares	of	the	two	points).	It	follows	that	three	points
(x1,y1),	(x2,y2)	and	(x3,y3)	lie	on	the	same	line	if	and	only	if	the	condition	
C:			(y3-y1)(x2-x1)=	(x3-x1)(y2-y1)	
holds.	Now	suppose	that	(x1,y1),	(x2,y2)	and	(x3,y3)	represent	the	(changing)	coordinates	of	the	three	ducks	as	they
waddle	along	their	paths.	Each	coordinate	is	a	linear	function	of	time	t,	so	the	equation	C	is	an	equation	in	t	of	degree
at	most	2	(i.e.,	is	a	quadratic).	If	such	an	equation	has	more	than	2	solutions	then	it	must	reduce	to	an	identity	and	thus
hold	true	for	all	values	of	t.	That	is,	if	the	ducks	are	in	a	row	at	more	than	two	times,	then	they	are	always	in	a	row.

4.	Two	computers	and	a	number	of	humans	participated	in	a	large	round-robin	chess	tournament	(i.e.,	every	participant
played	every	other	participant	exactly	once).	In	every	game,	the	winner	of	the	game	received	one	point,	the	loser	zero.
If	a	game	ended	in	a	draw,	each	player	received	half	a	point.	At	the	end	of	the	tournament,	the	sum	of	the	two
computers'	scores	was	38	points,	and	all	of	the	human	participants	finished	with	the	same	total	score.	Describe	(with
proof)	ALL	POSSIBLE	numbers	of	humans	that	could	have	participated	in	such	a	tournament.

Answer:	Let	n	denote	the	number	of	humans	and	let	s	be	equal	to	the	human's	common	score.	As	there	are	n+2
participants,	there	are	(n+2)(n+1)/2	games	played	in	the	tournament	and	each	game	produces	a	total	of	one	point	to
the	common	score.	Thus,	
sn+38=(n+2)(n+1)/2	
which	simplifies	to	2sn=n2+3n-74.	Since	n	and	2s	are	integers	and	n	clearly	divides	n2+3n,	n	must	divide	74.	The	only
integers	which	divide	74	are	n=1,2,37,74.	It	is	easy	to	see	that	n=1	and	n=2	are	impossible	(since	there	would	not	be
enough	games	to	get	the	computer's	score	high	enough).	It	remains	to	see	that	the	other	two	possibilities	are	both
viable:	If	n=37	and	every	game	is	a	draw,	then	the	conditions	of	the	problem	are	satisfied.	As	well,	if	n=74	and	one
computer	loses	every	game	and	the	other	computer	beats	the	first	computer	but	draws	every	human	then	again	the
conditions	are	satisfied.	Thus,	n=37	and	74	is	the	complete	set	of	solutions.

5.	One	thousand	cows	labeled	000,	001,...,	998,	999	are	requested	to	enter	100	empty	barns	labeled	00,	01,...,98,	99.
One	hundred	Dalmatians	--	one	at	the	door	of	each	barn	--	enforce	the	following	rule:	In	order	for	a	cow	to	enter	a	barn,
the	label	of	the	barn	must	be	obtainable	from	the	label	of	the	cow	by	deleting	one	of	the	digits.	For	example,	the	cow
labeled	357	would	be	admitted	into	any	of	the	barns	labeled	35,	37	or	57,	but	would	not	admitted	into	any	other	barns.

a)	(15	points)	Demonstrate	that	there	is	a	way	for	all	1000	cows	to	enter	the	barns	so	that	at	least	50	of	the	barns
remain	empty.

Answer:	Let	S	be	the	set	of	50	barns	in	which	EITHER	both	digits	are	even	OR	both	digits	are	odd.	Clearly,	every	three
digit	number	has	(at	least)	two	digits	that	are	even	or	else	two	digits	that	are	odd,	so	every	cow	can	enter	at	least	one	of
the	barns	in	S.

b)	(15	points)	Prove	that	no	matter	how	they	distribute	themselves,	after	all	1000	cows	enter	the	barns,	at	most	50	of
the	barns	will	remain	empty.

Answer:	Call	a	cow	optimistic	if	the	digits	of	its	number	are	increasing,	i.e.,	a	<	b	<	c,	pessimistic	if	its	digits	are
decreasing,	and	constant	if	all	3	of	its	digits	are	the	same.	Suppose	the	cows	are	all	put	into	appropriate	barns.	Clearly,
the	10	constant	cows	must	go	into	barns	00,11,...,99,	so	these	10	barns	are	nonempty.	We	will	show	that	at	least	20
barns	are	needed	to	accommodate	the	optimistic	barns.	This	suffices	as	a	symmetric	argument	shows	that	20	barns	are
needed	to	accommodate	the	pessimistic	cows,	hence	at	least	10+20+20=50	barns	are	nonempty.	For	any	subset	S	of
{0,1,...,9},	call	a	cow	an	S-cow	if	all	three	of	its	digits	are	elements	of	S.	
Claim:	If	S	has	2n	elements	(for	1	<	=	n	<	=	5)	then	at	least	n(n-1)	barns	are	needed	to	accommodate	all	of	the
optimistic	S-cows.	



Note	that	the	claim	suffices	since	it	implies	that	at	least	5·	4=20	barns	are	needed	to	accommodate	all	of	the	optimistic
cows.	The	claim	is	proved	by	induction	on	n.	When	n=1	this	is	trivial	as	there	are	no	optimistic	S	cows	when	S	has	size
2.	So	assume	that	the	claim	holds	for	sets	of	size	2n-2	and	fix	a	set	S	of	size	2n.	Let	a	be	the	smallest	element	of	S.	First,
if	Barn	ac	is	nonempty	for	every	c	in	S	-	{a},	and	we	take	S'	to	be	any	subset	of	S	-	{a}	of	size	2n-2,	then	(n-1)(n-2)
barns	are	needed	to	accommodate	the	optimistic	S'-cows.	Hence	at	least	(n-1)(n-2)+2n-1	barns	are	nonempty,	which	is
greater	than	n(n-1).	So	assume	that	Barn	ac	is	empty	for	at	least	one	c	in	S	-	{a}.	Let	c	be	the	largest	element	of	S	so
that	Barn	ac	is	empty	and	let	S'=S-{a,c}.	Now,	we	have	assumed	that	each	of	the	Barns	ad	are	nonempty	where	d	>	c
and	d	in	S.	Furthermore,	for	all	b	in	S	satisfying	a	<	b	<	c,	Cow	abc	is	put	into	either	Barn	ab	or	bc,	so	at	least	one	of
those	two	barns	is	nonempty.	Thus,	in	addition	to	the	(n-1)(n-2)	barns	that	are	needed	to	accommodate	the	optimistic	S'-
cows,	at	least	2n-2	additional	barns	are	nonempty,	which	establishes	the	claim.


