THE $42^{\text {nd }}$ ANNUAL (2021) UNIVERSITY OF MARYLAND
 HIGH SCHOOL MATHEMATICS COMPETITION

PART II SOLUTIONS

1. If they have n coins, we must have

$$
1+2+\cdots+n<2021 \Rightarrow \frac{n(n+1)}{2}<2021 \Rightarrow n(n+1)<4042 .
$$

We notice that $63 \times 64<4042$ and $64 \times 65>4042$. Therefore, the answer is $n=63$.
2. Re-writing a_{k} we obtain

$$
a_{k}=\frac{\sqrt{k(k+1)}+\sqrt{k+1}-1-\sqrt{k}}{k}=\frac{(\sqrt{k}+1)(\sqrt{k+1}-1)}{k} .
$$

Multiplying by the conjugate of $\sqrt{k+1}-1$ we obtain the following:

$$
a_{k}=\frac{(\sqrt{k}+1)(\sqrt{k+1}-1)(\sqrt{k+1}+1)}{k(\sqrt{k+1}+1)}=\frac{\sqrt{k}+1}{\sqrt{k+1}+1} .
$$

Therefore,

$$
a_{4} \cdots a_{99}=\prod_{k=4}^{99} \frac{\sqrt{k}+1}{\sqrt{k+1}+1}=\frac{(\sqrt{4}+1) \cdots(\sqrt{99}+1)}{(\sqrt{5}+1) \cdots(\sqrt{100}+1)}=\frac{3}{11} .
$$

The answer is $3 / 11$.
3. We will prove this by induction on n.

For $n=1$, the permutation $a_{1}=1$ gives $a_{1}+1=2$ which is a power of 2 .

Let $n \geq 2$ be an integer, and assume the claim is true for all integers less than n. Suppose 2^{k} is the least power of 2 exceeding n, i.e. $2^{k-1} \leq n<2^{k}$. Since $2^{k} \leq 2 n$ we have $2^{k}-n \leq n$. For simplicity let $m=2^{k}-n-1$. By inductive hypothesis, there is a permutation a_{1}, \ldots, a_{m} of $1, \ldots, m$ for which $a_{j}+j$ is a power of 2 for all $j=1, \ldots, m$.

Now, let $a_{j}=2^{k}-j$ for all $j=m+1, \ldots, n$. Note that $a_{j}+j=2^{k}$ is a power of 2 . Furthermore, these values of a_{j} are $n-m$ consecutive integers starting with $2^{k}-m-1=n$ and decreasing until $2^{k}-n=m+1$. This means a_{1}, \ldots, a_{n} is a permutation of $1, \ldots, n$ satisfying the given conditions.
4. Suppose on the contrary there is no plane that contains four points of different colors. We will obtain a contradiction.

Note that every line contains at most two colors, because if a line ℓ contains at least three colors, ℓ along with a point of a fourth color would lie on a plane which contains four points of different colors.

Now, assume B, G, O, R, Y are points with five different colors blue, green, orange, red, yellow, respectively. If line $B G$ intersects the plane \mathcal{P} containing O, R, Y, this intersection point must be blue or green, since it is on the line $B G$, but that means \mathcal{P} contains four points of different colors. Therefore, $B G$ must be parallel to \mathcal{P}. Let \mathcal{Q} be the plane containing $B G$ that is parallel to \mathcal{P}. If X is a blue point outside \mathcal{Q}, then $X G$ intersects \mathcal{P} which is a contradiction using a similar argument to above. Similarly there are no green points outside of \mathcal{Q}. Therefore, all green and blue points must lie on a single plane \mathcal{Q}. With a similar argument each pair of colors must be on a single plane, which means all points of the 3 -dimensional space must lie on at most $\binom{5}{2}=10$ planes, which is a contradiction.
5. For every two subsets X, Y of \mathbb{R} and every real number r define

$$
r+X=\{r+x \mid x \in X\}, \text { and } X+Y=\{x+y \mid x \in X, \text { and } y \in Y\}
$$

We will first prove the following claims:

Claim 1: For every real number r and every interval (a, b) we have $r+(a, b)=(r+a, r+b)$.

Proof. Every element of $r+(a, b)$ is of the form $r+x$, where $a<x<b$ and thus $r+a<r+x<r+b$. Which means $r+x \in(r+a, r+b)$. If y is an element of $(r+a, r+b)$, then $r+a<y<r+b$ which means $a<y-r<b$ and hence y can be written as $r+y-r$, where $y-r$ is in (a, b).

Claim 2. For every interval (a, b) of length more than $2\left(b_{n}-a_{1}\right)$, there is an interval (x, y) for which $C_{n}+(x, y)=(a, b)$.

Proof. Let $x=a-a_{1}$, and $y=b-b_{n}$. Every element of $C_{n}+(x, y)$ is strictly between $a_{1}+x=a$ and $b_{n}+y=b$. On the other hand, $C_{n}+(x, y)$ contains $a_{1}+(x, y)=\left(a_{1}+x, a_{1}+y\right)=\left(a, a_{1}+b-b_{n}\right)$ as well as $b_{n}+(x, y)=\left(b_{n}+a-a_{1}, b\right)$. If we show $b_{n}+a-a_{1}<a_{1}+b-b_{n}$, then all numbers in the interval (a, b) will be covered by $C_{n}+(x, y)$. This inequality is equivalent to $2\left(b_{n}-a_{1}\right)<b-a$, which is true by assumption.

Now, we will create the set W as follows: Let r be a real number larger than $2\left(b_{n}-a_{1}\right)$. Consider the set $A=\{r, 2 r, \ldots, n r\}$. Note that

$$
\begin{equation*}
C_{n}+A=\left[a_{1}+r, b_{1}+r\right] \cup\left[a_{2}+r, b_{2}+r\right] \cup \cdots \cup\left[a_{n}+n r, b_{n}+n r\right] \tag{*}
\end{equation*}
$$

We see that $b_{n}+k r<a_{1}+(k+1) r$, since $b_{n}-a_{1}<r$. Therefore, all intervals in $(*)$ are disjoint, which means every element of $\left[a_{k}+k r, b_{k}+k r\right]$ appears exactly once as a sum of an element of C_{n} and an element of A. Furthermore, the length of the interval $\left(b_{k}+k r, a_{k+1}+(k+1) r\right)$ is $a_{k+1}-b_{k}+r>r$ which is larger than $2\left(b_{n}-a_{1}\right)$. By Claim 2, there is an interval I_{k} for which

$$
\begin{equation*}
C_{n}+I_{k}=\left(b_{k}+k r, a_{k+1}+(k+1) r\right) \tag{**}
\end{equation*}
$$

Set

$$
B=A \cup \bigcup_{k=1}^{n-1} I_{k}
$$

Combining ($*$) with ($* *$) we conclude that $C_{n}+B=\left[a_{1}+r, b_{n}+n r\right]$ and every element of $\left[a_{k}+\right.$ $\left.k r, b_{k}+k r\right]$ has a unique representation as a sum of an element of C_{n} and an element of B. Take

$$
W=B \cup\left(-\infty, a_{1}+r-b_{n}\right) \cup\left(b_{n}+n r-a_{1}, \infty\right) .
$$

We know $C_{n}+B$ gives us $\left[a_{1}+r, b_{n}+n r\right]$ and all elements of C_{n} are necessary to get to this interval. Since the smallest element of C_{n} is a_{1} and its largest element is b_{n},

$$
C_{n}+\left(-\infty, a_{1}+r-b_{n}\right)=\left(-\infty, a_{1}+r\right), \text { and } C_{n}+\left(b_{n}+n r-a_{1}, \infty\right)=\left(b_{n}+n r, \infty\right) .
$$

This shows $C_{n}+W=\mathbb{R}$ and all elements of C_{n} are necessary in order to obtain all real numbers.

