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1. If they have n coins, we must have

1 + 2 + · · ·+ n < 2021⇒ n(n + 1)

2
< 2021⇒ n(n + 1) < 4042.

We notice that 63× 64 < 4042 and 64× 65 > 4042. Therefore, the answer is n = 63.

2. Re-writing ak we obtain

ak =

√
k(k + 1) +

√
k + 1− 1−

√
k

k
=

(
√
k + 1)(

√
k + 1− 1)

k
.

Multiplying by the conjugate of
√
k + 1− 1 we obtain the following:

ak =
(
√
k + 1)(

√
k + 1− 1)(

√
k + 1 + 1)

k(
√
k + 1 + 1)

=

√
k + 1√

k + 1 + 1
.

Therefore,

a4 · · · a99 =

99∏
k=4

√
k + 1√

k + 1 + 1
=

(
√

4 + 1) · · · (
√

99 + 1)

(
√

5 + 1) · · · (
√

100 + 1)
=

3

11
.

The answer is 3/11.

3. We will prove this by induction on n.

For n = 1, the permutation a1 = 1 gives a1 + 1 = 2 which is a power of 2.

Let n ≥ 2 be an integer, and assume the claim is true for all integers less than n. Suppose 2k is the
least power of 2 exceeding n, i.e. 2k−1 ≤ n < 2k. Since 2k ≤ 2n we have 2k − n ≤ n. For simplicity
let m = 2k − n− 1. By inductive hypothesis, there is a permutation a1, . . . , am of 1, . . . ,m for which
aj + j is a power of 2 for all j = 1, . . . ,m.

Now, let aj = 2k − j for all j = m + 1, . . . , n. Note that aj + j = 2k is a power of 2. Furthermore,
these values of aj are n−m consecutive integers starting with 2k −m− 1 = n and decreasing until
2k − n = m + 1. This means a1, . . . , an is a permutation of 1, . . . , n satisfying the given conditions.

4. Suppose on the contrary there is no plane that contains four points of different colors. We will obtain
a contradiction.

Note that every line contains at most two colors, because if a line ` contains at least three colors,
` along with a point of a fourth color would lie on a plane which contains four points of different colors.
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Now, assume B,G,O,R, Y are points with five different colors blue, green, orange, red, yellow,
respectively. If line BG intersects the plane P containing O,R, Y , this intersection point must be
blue or green, since it is on the line BG, but that means P contains four points of different colors.
Therefore, BG must be parallel to P. Let Q be the plane containing BG that is parallel to P. If X
is a blue point outside Q, then XG intersects P which is a contradiction using a similar argument
to above. Similarly there are no green points outside of Q. Therefore, all green and blue points
must lie on a single plane Q. With a similar argument each pair of colors must be on a single plane,
which means all points of the 3-dimensional space must lie on at most

(
5
2

)
= 10 planes, which is a

contradiction.

5. For every two subsets X,Y of R and every real number r define

r + X = {r + x | x ∈ X}, and X + Y = {x + y | x ∈ X, and y ∈ Y }.

We will first prove the following claims:

Claim 1: For every real number r and every interval (a, b) we have r + (a, b) = (r + a, r + b).

Proof. Every element of r+(a, b) is of the form r+x, where a < x < b and thus r+a < r+x < r+b.
Which means r + x ∈ (r + a, r + b). If y is an element of (r + a, r + b), then r + a < y < r + b which
means a < y − r < b and hence y can be written as r + y − r, where y − r is in (a, b).

Claim 2. For every interval (a, b) of length more than 2(bn−a1), there is an interval (x, y) for which
Cn + (x, y) = (a, b).

Proof. Let x = a− a1, and y = b− bn. Every element of Cn + (x, y) is strictly between a1 + x = a
and bn +y = b. On the other hand, Cn +(x, y) contains a1 +(x, y) = (a1 +x, a1 +y) = (a, a1 + b− bn)
as well as bn + (x, y) = (bn + a − a1, b). If we show bn + a − a1 < a1 + b − bn, then all numbers in
the interval (a, b) will be covered by Cn + (x, y). This inequality is equivalent to 2(bn − a1) < b− a,
which is true by assumption.

Now, we will create the set W as follows: Let r be a real number larger than 2(bn − a1). Consider
the set A = {r, 2r, . . . , nr}. Note that

Cn + A = [a1 + r, b1 + r] ∪ [a2 + r, b2 + r] ∪ · · · ∪ [an + nr, bn + nr] (∗)

We see that bn + kr < a1 + (k + 1)r, since bn − a1 < r. Therefore, all intervals in (∗) are disjoint,
which means every element of [ak +kr, bk +kr] appears exactly once as a sum of an element of Cn and
an element of A. Furthermore, the length of the interval (bk +kr, ak+1 +(k+1)r) is ak+1− bk + r > r
which is larger than 2(bn − a1). By Claim 2, there is an interval Ik for which

Cn + Ik = (bk + kr, ak+1 + (k + 1)r) (∗∗)

Set

B = A ∪
n−1⋃
k=1

Ik.
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Combining (∗) with (∗∗) we conclude that Cn + B = [a1 + r, bn + nr] and every element of [ak +
kr, bk + kr] has a unique representation as a sum of an element of Cn and an element of B. Take

W = B ∪ (−∞, a1 + r − bn) ∪ (bn + nr − a1,∞).

We know Cn +B gives us [a1 + r, bn +nr] and all elements of Cn are necessary to get to this interval.
Since the smallest element of Cn is a1 and its largest element is bn,

Cn + (−∞, a1 + r − bn) = (−∞, a1 + r), and Cn + (bn + nr − a1,∞) = (bn + nr,∞).

This shows Cn + W = R and all elements of Cn are necessary in order to obtain all real numbers.
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