PART I SOLUTIONS

1. These 100 people have a total of 100×22 cookies. The total number of cookies for $100+N$ people is $(100+N) \times 20$. Therefore, we must have

$$
100 \times 22=(100+N) \times 20 \Rightarrow 110=100+N \Rightarrow N=10 .
$$

The answer is \mathbf{a}.
2. A point is purple if it is on the line $y=x+6$ and on the parabola $y=x^{2}$. This yields the equation $x^{2}=x+6$, which can be written as $x^{2}-x-6=0$, and can be factored as $(x-3)(x+2)=0 \Rightarrow x=3,-2$. The answer is \mathbf{c}.
3. By the distance formula, the length of the path of terrapin is $\sqrt{8^{2}+15^{2}}=17$ and the length of rabbit's path is $8+15=23$. Thus, the rabbit travels $23-17=6$ units farther. The answer is \mathbf{d}.
4. Since there are six pairs of gloves, it is possible to select six non-matching gloves. Once we choose seven gloves, we would have to have a pair of matching gloves. The answer is \mathbf{d}.
5. Since the plane travels at 600 mph and the GPS watch shows their speed at 602 mph , their speed must be 2 mph . Therefore, the length of the plane is $\frac{2}{60} \times 5280=176$ feet. The answer is \mathbf{d}.
6. The largest two-digit prime numbers are $97,89,83,79$. The answer is \mathbf{b}.
7. $8(\log 20+\log 50)=8 \log (20 \times 50)=8 \log (1000)=8 \times 3=24$. The answer is \mathbf{c}.
8. Suppose $p<q$ and $p q=a^{2}-1$ for some positive integer a. Then, $p q=(a-1)(a+1)$. Since $p q \geq 6$, we must have $a \geq 3$. Therefore, both $a-1$ and $a+1$ are more than 1 , and since p, q are both prime, we must have $p=a-1$ and $q=a+1$. This yields $q-p=2$. Furthermore, if $q-p=2$, then such an integer a exists. Among the given primes, there are four pairs of primes that differ by 2 . (They are $(3,5),(5,7),(11,13)$, and $(17,19))$. Since there are eight primes, we can select two of them in $\binom{8}{2}=28$ ways. Therefore, the probability of choosing a pair p, q for which $p q$ is one less than a perfect square is $4 / 28=1 / 7$. The answer is a.
9. The given assumption yields the following system of equations:

$$
\left\{\begin{array}{l}
81+9 b+3 c+d=0 \\
16+4 b+2 c+d=0 \\
1+b+c+d=0
\end{array}\right.
$$

Subtracting the last equation from the other two yields

$$
\left\{\begin{array}{l}
80+8 b+2 c=0 \\
15+3 b+c=0
\end{array}\right.
$$

Subtracting twice the second equation from the first one we obtain $50+2 b=0$, or $b=-25$. Substituting into $15+3 b+c=0$ we obtain $c=60$ and hence $d=-36$. When $a=0$, we obtain
the equation $-25 x^{2}+60 x-36=0$. This can be factored as $-(5 x-6)^{2}=0$. Thus, $x=6 / 5$. The answer is \mathbf{e}.
10. This year is $3+2 b+b^{2}$. For this year to be in the 1900 s we need to have $1900 \leq 3+2 b+b^{2}<2000$. This can be simplified to $1898 \leq(b+1)^{2}<1998$. Therefore, $b=43$ and the year is 1938 . The answer is \mathbf{b}.
11. First solution. The point $(\cos (x), \sin (x))$ is on the unit circle. In order for it to also satisfy $\sin (x)+\cos (x)=0.1$, it must lie on the line $x+y=0.1$. This line and the unit circle intersect at two points. Therefore, the answer is \mathbf{c}.

Second solution. Dividing both sides by $\sqrt{2}$ we obtain

$$
\frac{\sin (x)}{\sqrt{2}}+\frac{\cos (x)}{\sqrt{2}}=\frac{0.1}{\sqrt{2}} \Rightarrow \cos \left(\frac{\pi}{4}\right) \sin (x)+\sin \left(\frac{\pi}{4}\right) \cos (x)=\frac{0.1}{\sqrt{2}} \Rightarrow \sin (x+\pi / 4)=\frac{0.1}{\sqrt{2}}
$$

There are two solutions to this equation, one in the first quadrant and one in the second quadrant. The answer if \mathbf{c}.
12. Call the triangle $A B C$, and let H be the foot of perpendicular from O to one side $A B$ of the triangle. since the circumcenter and incenter of $A B C$ coincide, $A B C$ must be equilateral. By assumption $r=|O H|$ and $R=|O A|$. Since $A O$ is the angle bisector of $\angle B A C$, we have $\angle H A O=30^{\circ}$. Thus, $\frac{|O A|}{|O H|}=\csc \left(30^{\circ}\right)=2$. The answer is a.
13. Setting $a=|A B|=|A C|$, since the triangle $A B C$ is isosceles, $|B C|=a \sqrt{2}$. Using the Angle Bisector Theorem, we obtain

$$
\begin{aligned}
\frac{|B D|}{|A D|}=\frac{a \sqrt{2}}{a} & \Rightarrow \frac{|B D|}{a-|B D|}=\sqrt{2} \\
& \Rightarrow|B D|=a \sqrt{2}-|B D| \sqrt{2} \\
& \Rightarrow|B D|=\frac{a \sqrt{2}}{1+\sqrt{2}}=a \sqrt{2}(\sqrt{2}-1)=2 a-a \sqrt{2} \\
& \Rightarrow|B D|=|A B|+|A C|-|B C| .
\end{aligned}
$$

The answer is \mathbf{b}.
14. Rearranging the terms and using difference of squares we obtain the following:

$$
\begin{aligned}
& 1+4+\sum_{k=1}^{505}\left(-(4 k-1)^{2}+(4 k+1)^{2}\right)+\sum_{k=1}^{505}\left(-(4 k)^{2}+(4 k+2)^{2}\right) \\
& =5+\sum_{k=1}^{505} 2(8 k)+\sum_{k=1}^{505} 2(8 k+2)=5+\left(\sum_{k=1}^{505} 32 k\right)+4 \times 505 \\
& =2025+32 \frac{505 \times 506}{2}=4090505
\end{aligned}
$$

The answer is \mathbf{e}.
15. Suppose there are r red balls and $8-r$ green balls. The chance of selecting 1 red and 2 green balls is,

$$
\frac{r\binom{8-r}{2}}{\binom{8}{3}}=\frac{r(8-r)(7-r)}{112}
$$

Therefore, in order to maximize this, we need to maximize $r(8-r)(7-r)$. After evaluating this expression for $r=1,2,3,4,5,6$ we see that $r=2$ and $r=3$ both yield the maximum value of 60. The answer is \mathbf{c}.
16. There are four possibilities for the first move. By symmetry we will find the number of frog's trajectories that start with the move $(2,2) \rightarrow(3,2)$ and multiply the answer by 4 . We will count these based on the number of moves after the first move. For that we will use R, L, U, D for right, left, up, and down, respectively.

One move: The only possibility is " R ". So there is only 1 possible move.
Two moves: The possibilities are UR, UU, DR, DD. So, there are four possible moves.
Three moves: The possibilities are ULU, UDR, DLD, DUR, LLLL, LRR, LUU, LDD. So, there are eight possibilities.

Therefore, the number of possibilities is $4 \times(1+4+8)=52$. The answer is \mathbf{e}.
17. Subtracting the equations we obtain $a x+b-b x-a=0$, which yields $(x-1)(a-b)=0$, and hence $x=1$ or $a=b$. If $x=1$ is a common root of the equations, we must have $1+a+b=0$, or $a=-b-1$. We could have $-20 \leq b \leq 19$. So we obtain 40 different pairs of (a, b).

When $a=b$, we need the discriminant of $x^{2}+a x+a=0$ to be nonnegative. Which implies $a^{2}-4 a \geq 0$. Therefore, $a \leq 0$ or $a \geq 4$. This yields $21+17=38$ pairs of (a, b). Adding these up, we conclude there are 78 pairs of (a, b). The answer is \mathbf{e}.
18. For simplicity, let $d(k)$ be the number of positive divisors of k. Let p be a prime factor of n and write $n=p^{\alpha} m$, where m is an integer, relatively prime to p. Each factor p^{β} with $0 \leq \beta \leq \alpha$ appears in exactly $d(m)$ positive divisors of n. Therefore, the exponent of p in the product of the positive divisors of p is,

$$
\sum_{\beta=0}^{\alpha} \beta d(m)=\frac{\alpha(\alpha+1) d(m)}{2}
$$

By assumption, we would need this to be 3α. This implies $(\alpha+1) d(m)=6$. This yields three possibilities for n.
Case I. $n=p^{5}$. In that case, $n=32$ is the only integer in the given range.

Case II. $n=p q^{2}$ for distinct primes p, q. This yields the following answers, $n=2 \cdot 3^{2}, 2 \cdot 5^{2}, 2 \cdot 7^{2}, 3 \cdot 2^{2}, 3 \cdot 5^{2}, 5 \cdot 2^{2}, 5 \cdot 3^{2}, 7 \cdot 2^{2}, 7 \cdot 3^{2}, 11 \cdot 2^{2}, 11 \cdot 3^{2}, 13 \cdot 2^{2}, 17 \cdot 2^{2}, 19 \cdot 2^{2}, 23 \cdot 2^{2}$.

There are 16 possibilities. So, the answer is \mathbf{e}.
19. In order for a point P inside the triangle to have the given property, the distance from P to $A B$ must be $1 / 3$ the distance from C to $A B$. Similarly for sides $A C$ and $A B$. Therefore, there is a unique point inside the triangle $A B C$ with the given properties. If a point P outside triangle $A B C$ and inside the $\angle B A C$ has this property, then $[A B C]=[P A B]+[P A C]-[P B C]$ Therefore, $[P A B]=[P B C]=[P A C]=[A B C]$. This implies, point P lies on the line parallel to $A B$ and through C. Similarly, P lies on the line passing through B and parallel to $A C$. This yields a unique point P. Three other points can similarly be found. The area of the convex region containing all these points is four times $[A B C]$. By Heron's formula

$$
[A B C]=\sqrt{21 \cdot 8 \cdot 7 \cdot 6}=7 \cdot 3 \cdot 4=84
$$

Therefore, the total area is 336 . The answer is a.
20. The angle between the angle bisector of A and $A B$ is $\frac{A}{2}$. The angle between the altitude of A and $A B$ is $90-B$. Thus, the angle between the angle bisector of A and the altitude at A is

$$
\left|\frac{A}{2}-90+B\right|=\left|\frac{A+2 B-180}{2}\right|=\left|\frac{B-C}{2}\right|=\frac{C-B}{2}
$$

By assumption we have $C-B=12$ and $C-A=24$. Subtracting we obtain $B-A=12$. Therefore, the angle between the angle bisector and the altitude at C is 6°. The answer is \mathbf{c}.
21. Dividing both sides by x^{2} we obtain

$$
a x^{2}+b x+1+\frac{b}{x}+\frac{a}{x^{2}}=0
$$

Setting $S=x+1 / x$ we obtain $S^{2}=x^{2}+1 / x^{2}+2$. This yields,

$$
a\left(S^{2}-2\right)+b S+1=0 \Rightarrow a S^{2}+b S-2 a+1=0
$$

Since x is positive $S \geq 2$. Therefore, the equation $a S^{2}+b S-2 a+1=0$ must have a root not less than 2. Note that for $S=0$, the quadratic $a S^{2}+b S-2 a+1$ is $-2 a+1$ which is negative. Therefore, this quadratic must be nonpositive at $S=2$. This implies $4 a+2 b-2 a+1 \leq 0$, which shows $a+b \leq-1 / 2$. When $x=1$, we obtain $a+b=-1 / 2$. The answer is \mathbf{d}.
22. Call the hexagon $A B C D E F$. Let M, N, P, and Q be vertices of the square on sides $A B, B C, D E$, and $E F$, respectively. Assume s is the side length of the hexagon and x be the distance $|A M|$. Dropping a perpendicular from A to $M Q$ we obtain a $30-60-90$ triangle. Therefore, $|M Q|=$ $s+x$. Similarly, dropping a perpendicular from B to $M N$ we obtain $|M N|=\sqrt{3}(s-x)$. Setting these equal we obtain $x=s(2-\sqrt{3})$. Therefore, the area of the square is $(s+x)^{2}=s^{2}(12-6 \sqrt{3})$. On the other hand the hexagon can be divided into six equilateral triangles with side length s. Therefore, the area of the hexagon is $1=6 \frac{s^{2} \sqrt{3}}{4}=\frac{3 s^{2} \sqrt{3}}{2}$. Since the area of the hexagon is 1 , we conclude $s^{2}=\frac{2}{3 \sqrt{3}}$. This gives us $s^{2}(12-6 \sqrt{3})=\frac{24-12 \sqrt{3}}{3 \sqrt{3}}=\frac{8 \sqrt{3}-12}{3}$. The answer is \mathbf{b}.
23. This integer can be written as:

$$
64^{7}+128^{3}+1=2^{42}+2^{21}+1=\frac{2^{63}-1}{2^{21}-1}
$$

The numerator is divisible by $2^{9}-1=7 \cdot 73$, while taking the denominator $\bmod 2^{9}-1$ we obtain

$$
2^{21}-1=\left(2^{9}\right)^{2} \cdot 2^{3}-1 \equiv 8-1=7\left(\bmod 2^{9}-1\right) \Rightarrow 2^{21}-1 \equiv 7(\bmod 73) .
$$

Therefore, the numerator is divisible by 73 , while the denominator is not. Thus, 73 divides this number. Its sum of digits is 10 . The answer is \mathbf{d}.
24. Multiplying the first equation by 2 and subtracting from the second we obtain $(a-d)^{2}+(b+c)^{2}=$ 0 . Since a, b, c, d are all real, we obtain $a=d$ and $b=-c$. Substituting into the first and last equation, we obtain $d^{2}+c^{2}=1$ and $5 d+c=5$. Solving this we obtain $c=5-5 d$. This implies $25+25 d^{2}-50 d+d^{2}=1$. Solving for d we obtain $a=d=1,12 / 13$. The sum of numerator and denominator of $12 / 13$ is 25 . The answer is \mathbf{c}.
25. The equality $\varphi(n)=\omega(n)+1$ holds if and only if no composite number less than n is relatively prime to n. The smallest composite number relatively prime to n is p^{2}, where p is the smallest prime not dividing n. Therefore, $n<p^{2}$.
If $p=2$, then $1<n<4$. Therefore, $n=2,3$.

If $p=3$, then $n<9$ and n is divisible by 2 . This gives us $n=4,8$.

If $p=5$, then $n<25$ and n must be divisible by 6 . This gives us $n=6,12,18,24$.

If $p=7$, then $n<49$ and n must be divisible by $2 \cdot 3 \cdot 5=30$. This yields $n=30$.

If $p=11$, then $n<121$ and n must be divisible by $2 \cdot 3 \cdot 5 \cdot 7=210$. Thus, no such solutions exist.

If $p=13$, then $n<169$ and n must be divisible by $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11=2310$. No such integer exists. To summarize there are nine such integers: $2,3,4,6,8,12,18,24,30$. The answer is \mathbf{c}.

