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HIGH SCHOOL MATHEMATICS COMPETITION

PART II SOLUTIONS

1. Find a real number x for which xbxc = 1234.

Note: bxc is the largest integer less than or equal to x.

Solution. We know bxc ≤ x < bxc + 1. Assuming x is positive we obtain the inequalities, bxc2 ≤
xbxc < (bxc+ 1)bxc. Since bxc is an integer, we can see bxc = 35. Thus, x =

1234

35
is a solution.

2. Let C1 be a circle of radius 1, and C2 be a circle that lies completely inside or on the boundary of
C1. Suppose P is a point that lies inside or on C2. Suppose O1, and O2 are the centers of C1, and
C2, respectively. What is the maximum possible area of ∆O1O2P? Prove your answer.

Solution. First, note that the area of a triangle ABC is
1

2
|BC||AH|, where AH is the height from

A to side BC. Since |AH| ≤ |AB|, we know [ABC] ≤ 1

2
|BC||AB|.

Let r be the radius of C2. Since C2 is inside C1, |O1O2| ≤ 1− r. By what we showed above, the area
of O1O2P is less than or equal to

1

2
|O1O2||O2P | ≤

1

2
(1− r)r =

1

2
[1/4− (r − 1/2)2] ≤ 1/8.

Note also that if C2 has radius 1/2 and is tangent to C1 and the angle ∠O1O2P = 90◦, the area of
O1O2P is equal to 1/8. Therefore, the answer is 1/8.

3. The numbers 1, 2, . . . , 99 are written on a blackboard. We are allowed to erase any two distinct
(but perhaps equal) numbers and replace them by their nonnegative difference. This operation is
performed until a single number k remains on the blackboard. What are all the possible values of k?
Prove your answer.

As an example if we start from 1, 2, 3, 4 on the board, we can proceed by erasing 1 and 2 and replacing
them by 1. At that point we are left with 1, 3, 4. We may then erase 3 and 4 and replace them by 1.
The last step would be to erase 1, 1 and end up with a single 0 on the board.

Solution. We will show all possible values of k are 0, 2, 4, 6, . . . , 98. First, note that in the beginning
there are 50 odd numbers on the board. In each step we either replace two odd numbers by an even
number, two even numbers by an even numbers or one odd and one even numbers are replaced by
an odd number. In other words, in each step we either reduce the number of odd numbers by 2 or
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we do not change the number of odd integers on the board. Since there are an even number of odd
numbers to begin with, the number of odd numbers on the board will always remain even. Thus, the
last number must be even. So, k must be one of 0, 2, 4, 6, . . . , 98.

Now, let 2` be one of these even integers, i.e. 0 ≤ ` ≤ 49. Replacing each pair

(1, 2), . . . , (2`− 3, 2`− 2), (2`− 1, 2`+ 1), (2`+ 2, 2`+ 3), . . . , (98, 99)

by their difference, we obtain the following list of integers:

1, . . . , 1︸ ︷︷ ︸
48 times

, 2, 2`.

Replacing 1, 2 with 1 we obtain the following list

1, . . . , 1︸ ︷︷ ︸
48 times

, 2`.

We may replace 1, 1 by 0 and then 1, 0 by 1 and then again 1, 1 by 0. Eventually it gives us 0, 2`,
which can be replaced by 2`.

4. Let a, b be two real numbers so that a3 − 6a2 + 13a = 1 and b3 − 6b2 + 13b = 19. Find a+ b. Prove
your answer.

Solution. We note that (a− 2)3 = a3 − 6a2 + 12a− 8 = 1− a− 8. Thus, (a− 2)3 + (a− 2) = −9.
Similarly, (2 − b)3 + (2 − b) = −9. If a − 2 were more than 2 − b, then (a − 2)3 + (a − 2) would be
more than (2− b)3 + (2− b), which is not the case. Similarly a− 2 cannot be less than 2− b. Thus,
a− 2 = 2− b, which implies a+ b = 4.

5. Let m,n, k be three positive integers with n ≥ k. Suppose A =
∏

1≤i≤j≤m
gcd(n + i, k + j) is the

product of gcd(n + i, k + j), where i, j range over all integers satisfying 1 ≤ i ≤ j ≤ m. Prove that
the following fraction is an integer

A

(k + 1) · · · (k +m)

(
n

k

)
.

Solution. First, we will show that if the product of n positive integers a1, . . . , an is divisible by an
integer b, then the product of gcd(a1, b), . . . , gcd(an, b) is also divisible by b. Let p be a prime factor
of b and let α1, . . . , αn, β be the exponents of p in the prime factorizations of a1, . . . , an, and b. If
αi ≥ β for some i, then the exponent of p in gcd(ai, b) and b are the same. Otherwise, the exponent
of p in ai is the same as the exponent of p in gcd(ai, b). Thus, in both cases, the exponent of p in
prime factorization of b does not exceed the exponent of p in the product gcd(a1, b) · · · gcd(an, b).
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Let Am =
∏

1≤i≤j≤m
gcd(n+ i, k + j). We need to prove

Am

(k + 1) · · · (k +m)

(
n

k

)
is an integer. We will do so by induction on m.

For m = 1, A1 = gcd(n+ 1, k + 1). We see that

(n+ 1)

(
n

k

)
= (n+ 1)

n!

k!(n− k)!
=

(n+ 1)!

(k + 1)!(n− k)!
(k + 1) = (k + 1)

(
n+ 1

k + 1

)
.

Therefore, (n + 1)
(
n
k

)
is divisible by k + 1. Since k + 1 also divides (k + 1)

(
n
k

)
, it must also divide

the greatest common divisor of (n+1)
(
n
k

)
and (k+1)

(
n
k

)
, which is A1

(
n
k

)
. Thus,

A1

k + 1

(
n
k

)
is an integer.

Now, assume we know
Am

(k + 1) · · · (k +m)

(
n

k

)
is an integer.

Am(n+ 1) · · · (n+m+ 1)

(k + 1) · · · (k +m)

(
n

k

)
=
Am(n+m+ 1)!

(k +m)!(n− k)!
= Am(k +m+ 1)

(
n+m+ 1

k +m+ 1

)
.

Therefore, Am(n+1)···(n+m+1)
(k+1)···(k+m)

(
n
k

)
is a multiple of k +m+ 1. By what we showed above, the following

is divisible by k +m+ 1.

Am gcd(n+ 1, k +m+ 1) · · · gcd(n+m+ 1, k +m+ 1)

(k + 1) · · · (k +m)

(
n

k

)
.

Dividing this by k +m+ 1, we conclude that

Am+1

(k + 1) · · · (k +m+ 1)

(
n

k

)
is an integer.
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