THE $43{ }^{\text {rd }}$ ANNUAL (2022) UNIVERSITY OF MARYLAND HIGH SCHOOL MATHEMATICS COMPETITION

PART II SOLUTIONS

1. Find a real number x for which $x\lfloor x\rfloor=1234$.

Note: $\lfloor x\rfloor$ is the largest integer less than or equal to x.

Solution. We know $\lfloor x\rfloor \leq x<\lfloor x\rfloor+1$. Assuming x is positive we obtain the inequalities, $\lfloor x\rfloor^{2} \leq$ $x\lfloor x\rfloor<(\lfloor x\rfloor+1)\lfloor x\rfloor$. Since $\lfloor x\rfloor$ is an integer, we can see $\lfloor x\rfloor=35$. Thus, $x=\frac{1234}{35}$ is a solution.
2. Let C_{1} be a circle of radius 1 , and C_{2} be a circle that lies completely inside or on the boundary of C_{1}. Suppose P is a point that lies inside or on C_{2}. Suppose O_{1}, and O_{2} are the centers of C_{1}, and C_{2}, respectively. What is the maximum possible area of $\Delta O_{1} O_{2} P$? Prove your answer.

Solution. First, note that the area of a triangle $A B C$ is $\frac{1}{2}|B C||A H|$, where $A H$ is the height from A to side $B C$. Since $|A H| \leq|A B|$, we know $[A B C] \leq \frac{1}{2}|B C||A B|$.

Let r be the radius of C_{2}. Since C_{2} is inside $C_{1},\left|O_{1} O_{2}\right| \leq 1-r$. By what we showed above, the area of $O_{1} O_{2} P$ is less than or equal to

$$
\frac{1}{2}\left|O_{1} O_{2}\right|\left|O_{2} P\right| \leq \frac{1}{2}(1-r) r=\frac{1}{2}\left[1 / 4-(r-1 / 2)^{2}\right] \leq 1 / 8 .
$$

Note also that if C_{2} has radius $1 / 2$ and is tangent to C_{1} and the angle $\angle O_{1} O_{2} P=90^{\circ}$, the area of $O_{1} O_{2} P$ is equal to $1 / 8$. Therefore, the answer is $1 / 8$.
3. The numbers $1,2, \ldots, 99$ are written on a blackboard. We are allowed to erase any two distinct (but perhaps equal) numbers and replace them by their nonnegative difference. This operation is performed until a single number k remains on the blackboard. What are all the possible values of k ? Prove your answer.

As an example if we start from $1,2,3,4$ on the board, we can proceed by erasing 1 and 2 and replacing them by 1 . At that point we are left with $1,3,4$. We may then erase 3 and 4 and replace them by 1 . The last step would be to erase 1,1 and end up with a single 0 on the board.

Solution. We will show all possible values of k are $0,2,4,6, \ldots, 98$. First, note that in the beginning there are 50 odd numbers on the board. In each step we either replace two odd numbers by an even number, two even numbers by an even numbers or one odd and one even numbers are replaced by an odd number. In other words, in each step we either reduce the number of odd numbers by 2 or
we do not change the number of odd integers on the board. Since there are an even number of odd numbers to begin with, the number of odd numbers on the board will always remain even. Thus, the last number must be even. So, k must be one of $0,2,4,6, \ldots, 98$.

Now, let 2ℓ be one of these even integers, i.e. $0 \leq \ell \leq 49$. Replacing each pair

$$
(1,2), \ldots,(2 \ell-3,2 \ell-2),(2 \ell-1,2 \ell+1),(2 \ell+2,2 \ell+3), \ldots,(98,99)
$$

by their difference, we obtain the following list of integers:

$$
\underbrace{1, \ldots, 1}_{48 \text { times }}, 2,2 \ell \text {. }
$$

Replacing 1,2 with 1 we obtain the following list

$$
\underbrace{1, \ldots, 1}_{48 \text { times }}, 2 \ell .
$$

We may replace 1,1 by 0 and then 1,0 by 1 and then again 1,1 by 0 . Eventually it gives us $0,2 \ell$, which can be replaced by 2ℓ.
4. Let a, b be two real numbers so that $a^{3}-6 a^{2}+13 a=1$ and $b^{3}-6 b^{2}+13 b=19$. Find $a+b$. Prove your answer.

Solution. We note that $(a-2)^{3}=a^{3}-6 a^{2}+12 a-8=1-a-8$. Thus, $(a-2)^{3}+(a-2)=-9$. Similarly, $(2-b)^{3}+(2-b)=-9$. If $a-2$ were more than $2-b$, then $(a-2)^{3}+(a-2)$ would be more than $(2-b)^{3}+(2-b)$, which is not the case. Similarly $a-2$ cannot be less than $2-b$. Thus, $a-2=2-b$, which implies $a+b=4$.
5. Let m, n, k be three positive integers with $n \geq k$. Suppose $A=\prod_{1 \leq i \leq j \leq m} \operatorname{gcd}(n+i, k+j)$ is the product of $\operatorname{gcd}(n+i, k+j)$, where i, j range over all integers satisfying $1 \leq i \leq j \leq m$. Prove that the following fraction is an integer

$$
\frac{A}{(k+1) \cdots(k+m)}\binom{n}{k} .
$$

Solution. First, we will show that if the product of n positive integers a_{1}, \ldots, a_{n} is divisible by an integer b, then the product of $\operatorname{gcd}\left(a_{1}, b\right), \ldots, \operatorname{gcd}\left(a_{n}, b\right)$ is also divisible by b. Let p be a prime factor of b and let $\alpha_{1}, \ldots, \alpha_{n}, \beta$ be the exponents of p in the prime factorizations of a_{1}, \ldots, a_{n}, and b. If $\alpha_{i} \geq \beta$ for some i, then the exponent of p in $\operatorname{gcd}\left(a_{i}, b\right)$ and b are the same. Otherwise, the exponent of p in a_{i} is the same as the exponent of p in $\operatorname{gcd}\left(a_{i}, b\right)$. Thus, in both cases, the exponent of p in prime factorization of b does not exceed the exponent of p in the product $\operatorname{gcd}\left(a_{1}, b\right) \cdots \operatorname{gcd}\left(a_{n}, b\right)$.

Let $A_{m}=\prod_{1 \leq i \leq j \leq m} \operatorname{gcd}(n+i, k+j)$. We need to prove

$$
\frac{A_{m}}{(k+1) \cdots(k+m)}\binom{n}{k}
$$

is an integer. We will do so by induction on m.

For $m=1, A_{1}=\operatorname{gcd}(n+1, k+1)$. We see that

$$
(n+1)\binom{n}{k}=(n+1) \frac{n!}{k!(n-k)!}=\frac{(n+1)!}{(k+1)!(n-k)!}(k+1)=(k+1)\binom{n+1}{k+1} .
$$

Therefore, $(n+1)\binom{n}{k}$ is divisible by $k+1$. Since $k+1$ also divides $(k+1)\binom{n}{k}$, it must also divide the greatest common divisor of $(n+1)\binom{n}{k}$ and $(k+1)\binom{n}{k}$, which is $A_{1}\binom{n}{k}$. Thus, $\frac{A_{1}}{k+1}\binom{n}{k}$ is an integer.

Now, assume we know

$$
\frac{A_{m}}{(k+1) \cdots(k+m)}\binom{n}{k} \text { is an integer. }
$$

$$
\frac{A_{m}(n+1) \cdots(n+m+1)}{(k+1) \cdots(k+m)}\binom{n}{k}=\frac{A_{m}(n+m+1)!}{(k+m)!(n-k)!}=A_{m}(k+m+1)\binom{n+m+1}{k+m+1}
$$

Therefore, $\frac{A_{m}(n+1) \cdots(n+m+1)}{(k+1) \cdots(k+m)}\binom{n}{k}$ is a multiple of $k+m+1$. By what we showed above, the following is divisible by $k+m+1$.

$$
\frac{A_{m} \operatorname{gcd}(n+1, k+m+1) \cdots \operatorname{gcd}(n+m+1, k+m+1)}{(k+1) \cdots(k+m)}\binom{n}{k} .
$$

Dividing this by $k+m+1$, we conclude that

$$
\frac{A_{m+1}}{(k+1) \cdots(k+m+1)}\binom{n}{k}
$$

is an integer.

